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SOME PROPERTIES OF POLY-COSINE TANGENT AND
POLY-SINE TANGENT POLYNOMIALS†

C.S. RYOO
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1. Introduction

Many mathematicians have been working on Bernoulli numbers and polyno-
mials, Euler numbers and polynomials, Genocchi numbers and polynomials, and
tangent numbers and polynomials (see [1, 2, 3, 4, 5, 6, 10, 11, 12]). It is well
known that the Bernoulli polynomials are defined by the generating function to
be (

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. The tangent poly-
nomials are given by the generating function to be(

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (2)

When x = 0, Tn = Tn(0) are called the tangent numbers (see [5, 6]).
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The Bernoulli polynomials B
(r)
n (x) of order r are defined by the following

generating function(
t

et − 1

)r
ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (|t| < 2π). (3)

The Frobenius–Euler polynomials of order r, denoted by H
(r)
n (u, x), are defined

as (
1− u

et − u

)r
ext =

∞∑
n=0

H(r)
n (u, x)

tn

n!
. (4)

The values at x = 0 are called Frobenius-Euler numbers of order r; when r = 1,
the polynomials or numbers are called ordinary Frobenius-Euler polynomials or
numbers. The cosine-tangent polynomials T (C)

n (x, y) and sine-tangent polyno-
mials T (S)

n (x, y) are defined by means of the generating functions
∞∑
n=0

T (C)
n (x, y)

tn

n!
=

2

e2t + 1
ext cos yt, (5)

and
∞∑
n=0

T (k,S)
n (x, y)

tn

n!
=

2

e2t + 1
ext sin yt, (6)

respectively.
In this paper, we introduce some special polynomials which are related to

tangent polynomials. In addition, we give some identities for these polynomials.
Finally, we investigate the distribution of zeros of these polynomials.

2. Poly-cosine tangent polynomials and poly-sine tangent
polynomials

In this section, we define the poly-cosine tangent and poly-sine tangen poly-
nomials. For any integer k, let Lik(t) be the power series given by

Lik(t) =

∞∑
m=1

tm

mk
. (7)

When k = 1, Li1(t) = − log(1− t). In [8], we introduced poly-tangent numbers
and polynomials. After that we investigated some their properties. We also
obtained some relationships both between these polynomials and tangent poly-
nomials and between these polynomials and cauchy numbers. Now, we define
modified poly-tangent numbers and polynomials.

Definition 2.1. For any integer k, the modified poly-tagent polynomials T (k)
n (z)

are defined by means of the generating function
∞∑
n=0

T (k)
n (z)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ezt. (8)
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The numbers T (k)
n (0) := T

(k)
n are called the modified poly-tagent numbers. If

k = 1, then
T (1)
n (x) = Tn(x), T

(1)
n = Tn.

Now, we consider the poly-tagent polynomials that are given by the generating
function to be

∞∑
n=0

T (k)
n (x+ iy)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
e(x+iy)t. (9)

On the other hand, we note that

e(x+iy)t = exteiyt = ext(cos yt+ i sin yt). (10)

From (9) and (10), we obtain
∞∑
n=0

T (k)
n (x+ iy)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ext(cos yt+ i sin yt), (11)

and
∞∑
n=0

T (k)
n (x− iy)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ext(cos yt− i sin yt). (12)

Hence, by (11) and (12), we obtain

2Lik(1− e−t)

t(e2t + 1)
ext cos yt =

∞∑
n=0

(
T

(k)
n (x+ iy) + T

(k)
n (x− iy)

2

)
tn

n!
, (13)

and

2Lik(1− e−t)

t(e2t + 1)
ext sin yt =

∞∑
n=0

(
T

(k)
n (x+ iy) + T

(k)
n (x− iy)

2i

)
tn

n!
. (14)

It follows that we define the following poly-cosine tangent and poly-sine-tangent
polynomials.

Definition 2.2. The poly-cosine tangent polynomials T (k,C)
n (x, y) and poly-sine

tangent polynomials T (k,S)
n (x, y) are defined by means of the generating functions

∞∑
n=0

T (k,C)
n (x, y)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ext cos yt, (15)

and
∞∑
n=0

T (k,S)
n (x, y)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ext sin yt, (16)

respectively.
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Note that T (k,C)
n (x, 0) = T

(k)
n (x), T

(k,S)
n (x, 0) = 0, (n ≥ 0).

By (13)-(16), we have

T (k,C)
n (x, y) =

T
(k)
n (x+ iy) + T

(k)
n (x− iy)

2
,

T (k,S)
n (x, y) =

T
(k)
n (x+ iy)− T

(k)
n (x− iy)

2i
.

Clearly, we obtain the following explicit representations of T (k)
n (x+ iy)

T (k)
n (x+ iy) =

n∑
l=0

(
n

l

)
T

(k)
l (x+ iy)n−l,

T (k
n (x+ iy) =

n∑
l=0

(
n

l

)
T

(k)
l (x)(iy)n−l.

Let

ext cos yt =

∞∑
l=0

Cl(x, y)
tl

l!
, ext sin yt =

∞∑
l=0

Sl(x, y)
tl

l!
. (17)

Then, by Taylor expansions of ext cos yt and ext sin yt, we get

ext cos yt =

∞∑
l=0

 [ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m

 tl

l!
(18)

and

ext sin yt =

∞∑
l=0

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1

 tl

l!
, (19)

where [ ] denotes taking the integer part (see [Axiom]). By (17), (18) and (19),
we get

Cl(x, y) =

[ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m,

and

Sl(x, y) =

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1, (l ≥ 0).

Now, we observe that

2Lik(1− e−t)

t(e2t + 1)
ext cos yt =

( ∞∑
l=0

T
(k)
l

tl

l!

)( ∞∑
m=0

Cm(x, y)
tm

m!

)

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
T

(k)
l Cn−l(x, y)

)
tn

n!
.

Therefore, we obtain the following theorem
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Theorem 2.3. For n ≥ 0, we have

T (k,C)
n (x, y) =

n∑
l=0

(
n

l

)
T

(k)
l Cn−l(x, y)

and

T (k,S)
n (x, y) =

n∑
l=0

(
n

l

)
T

(k)
l Sn−l(x, y).

Let

Lik(1− e−t)ext cos yt =

∞∑
l=0

C
(k)
l (x, y)

tl

l!
,

Lik(1− e−t)ext sin yt =

∞∑
l=0

S
(k)
l (x, y)

tl

l!
.

(20)

Then we get
∞∑
n=0

C(k)
n (x, y)

tn

n!
=

∞∑
l=0

(1− e−t)l+1

(l + 1)k
ext cos yt,

=

∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)ie(x−i)t cos(yt)

=

∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)i

∞∑
n=0

Cn(x− i, y)
tn

n!

=

∞∑
n=0

( ∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)iCn(x− i, y)

)
tn

n!
.

(21)

By (20) and (21), we get

C(k)
n (x, y) =

∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)iCn(x− i, y),

and

S(k)
n (x, y) =

∞∑
l=0

1

(l + 1)k

l+1∑
i=0

(
l + 1

i

)
(−1)iSn(x− i, y).

A few of them are

C
(k)
0 (x, y) = 1, C

(k)
1 (x, y) = 1,

C
(k)
2 (x, y) = −1 + 21−k + 2x,

C
(k)
3 (x, y) = 1− 3 · 21−k + 2 · 31−k − 3x+ 3 · 21−kx+ 3x2 − 3y2,
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and
S
(k)
0 (x, y) = 0, S

(k)
1 (x, y) = 0,

S
(k)
2 (x, y) = 2y,

S
(k)
3 (x, y) = −3y + 3 · 21−ky + 6xy.

S
(k)
4 (x, y) = 4y − 3 · 23−ky + 8 · 31−ky − 12xy + 3 · 23−kxy + 12x2y − 4y3.

Now, we observe that
∞∑
n=0

T (k,C)
n (x, y)

tn+1

n!
=

2

e2t + 1
Lik(1− e−t)ext cos yt

=

( ∞∑
n=0

C(k)
n (x, y)

tn

n!

)( ∞∑
n=0

Tn
tn

n!

)

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
C

(k)
l (x, y)Tn−l

)
tn

n!
.

Therefore, we obtain the following theorem
Theorem 2.4. For n > 0, we have

nT
(k,C)
n−1 (x, y) =

n∑
l=0

(
n

l

)
C

(k)
l (x, y)Tn−l

and
nT

(k,S)
n−1 (x, y) =

n∑
l=0

(
n

l

)
S
(k)
l (x, y)Tn−l.

From (15), we have
2Lik(1− e−t)ext cos yt

=

( ∞∑
n=0

T (k,C)
n (x, y)

tn+1

n!

)(
e2t + 1

)
=

∞∑
n=0

(
n∑
l=0

(
n

l

)
lT

(k,C)
l−1 (x, y)2n−l + nT

(k,C)
n−1 (x, y)

)
tn

n!
.

(22)

By (15) and (22), we get

C(k)
n (x, y) =

1

2

(
n∑
l=0

(
n

l

)
lT

(k,C)
l−1 (x, y)2n−l + nT

(k,C)
n−1 (x, y)

)
. (23)

Therefore, we obtain the following theorem
Theorem 2.5. For n > 0, we have

C(k)
n (x, y) =

1

2

(
n∑
l=0

(
n

l

)
lT

(k,C)
l−1 (x, y)2n−l + nT

(k,C)
n−1 (x, y)

)
,
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and

S(k)
n (x, y) =

1

2

(
n∑
l=0

(
n

l

)
lT

(k,S)
l−1 (x, y)2n−l + nT

(k,S)
n−1 (x, y)

)
.

Now, we observe that
∞∑
n=0

T (k,C)
n (x+ 2, y)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
e(x+2)t cos yt

=
2Lik(1− e−t)

t(e2t + 1)
ext(e2t − 1 + 1) cos yt

=
2

t
Lik(1− e−t)ext cos yt− 2Lik(1− e−t)

t(e2t + 1)
ext cos yt

Hence we have
∞∑
n=0

(
T (k,C)
n (x+ 2, y) + T (k,C)

n (x, y)
) tn+1

n!
=

∞∑
n=0

(
2C(k)

n (x, y)
) tn
n!
.

By comparing the coefficients on the both sides, we get

T
(k,C)
n−1 (x+ 2, y) + T

(k,C)
n−1 (x, y) =

2

n
C(k)
n (x, y), (n ≥ 1).

Therefore, we obtain the following theorem:

Theorem 2.6. For n ≥ 1, we have

T
(k,C)
n−1 (x+ 2, y) + T

(k,C)
n−1 (x, y) =

2

n
C(k)
n (x, y),

and
T

(k,S)
n−1 (x+ 2, y) + T

(k,S)
n−1 (x, y) =

2

n
S(k)
n (x, y).

By (15), we have
∞∑
n=0

T (k,C)
n (x+ r, y)

tn

n!
=

(
2Lik(1− e−t)

t(e2t + 1)
ext cos yt

)
ert

=

( ∞∑
l=0

T
(k,C)
l (x, y)

tl

l!

)( ∞∑
k=0

rk
tk

k!

)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
T

(k,C)
k (x, y)rn−k

)
tn

n!
.

(24)

Therefore, by comparing the coefficients on the both sides, we obtain the follow-
ing theorem:

Theorem 2.7. For n ≥ 0, r ∈ N, we have

T (k,C)
n (x+ r, y) =

n∑
k=0

(
n

k

)
T

(k,C)
k (x, y)rn−k,
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and

T (k,S)
n (x+ r, y) =

n∑
k=0

(
n

k

)
T

(k,S)
k (x, y)rn−k.

By (15), we get

∞∑
n=1

∂

∂x
T (k,C)
n (x, y)

tn

n!
=

∂

∂x

(
2Lik(1− e−t)

t(e2t + 1)
ext cos yt

)
=

2Lik(1− e−t)

e2t + 1
ext cos yt

=

∞∑
n=1

(
nT

(k,C)
n−1 (x, y)

) tn
n!
.

(25)

Comparing the coefficients on the both sides of (25), we have

∂

∂x
T (k,C)
n (x, y) = nT

(k,C)
n−1 (x, y).

Similarly, for n ≥ 1, we have

∂

∂x
T (k,S)
n (x, y) = nT

(k,S)
n−1 (x, y),

∂

∂y
T (k,C)
n (x, y) = −nT (k,S)

n−1 (x, y),

∂

∂y
T (k,S)
n (x, y) = nT

(k,C)
n−1 (x, y).

We remember that the classical Stirling numbers of the first kind S1(n, k) and
S2(n, k) are defined by the relations (see [12])

xn =

n∑
k=0

S2(n, k)(x)k and (x)n =

n∑
k=0

S1(n, k)x
k, (26)

respectively. Here, (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. The numbers S2(n,m) also admit a representation in
terms of a generating function

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
. (27)
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By (15), (27) and by using Cauchy product, we get

∞∑
n=0

T (k,C)
n (x, y)

tn

n!
=

(
2Lik(1− e−t)

t(e2t + 1)

)
(1− (1− e−t))−x cos yt

=

(
2Lik(1− e−t)

t(e2t + 1)

)
cos yt

∞∑
l=0

(
x+ l − 1

l

)
(1− e−t)l

=

∞∑
l=0

< x >l
(et − 1)l

l!

(
2Lik(1− e−t)

t(e2t + 1)

)
e−lt cos yt

=
∞∑
l=0

< x >l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (k,C)
n (−l, y) t

n

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(k,C)
n−i (−l, y) < x >l

)
tn

n!
,

(28)

where < x >l= x(x+ 1) · · · (x+ l − 1)(l ≥ 1) with < x >0= 1.
By comparing the coefficients on both sides of (28), we have the following

theorem:

Theorem 2.8. For n > 0, we have

T (k,C)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(k,C)
n−i (−l, y) < x >l,

T (k,S)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(k,S)
n−i (−l, y) < x >l .

Now, we define the new type polynomials that are given by the generating
functions to be

2Lik(1− e−t)

t(e2t + 1)
cos yt =

∞∑
n=0

T (k,C)
n (y)

tn

n!
, (29)

and

2Lik(1− e−t)

t(e2t + 1)
sin yt =

∞∑
n=0

T (k,S)
n (y)

tn

n!
, (30)

respectively.
Note that T (k,C)

n (0, y) = T
(k,C)
n (y), T

(k,S)
n (0, y) = T

(k,S)
n (y), T

(k,C)
n (0) = T

(k)
n ,

T
(k,S)
n (0) = 0. The new type polynomials can be determined explicitly. A few
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of them are

T
(k,C)
0 (y) = 1, T

(k,C)
1 (y) = −3

2
+ 2−k,

T
(k,C)
2 (y) =

4

3
− 22−k + 2 · 3−k − y2,

T
(k,C)
3 (y) =

3

4
+ 3 · 21−2k + 7 · 2−1−k + 3 · 21−k − 2 · 31−k − 32−k

+
9y2

2
− 3 · 2−ky2,

and
T

(k,S)
0 (y) = 0, T

(k,S)
1 (y) = y,

T
(k,S)
2 (y) = −3y + 21−ky,

T
(k,S)
3 (y) = 4y − 3 · 22−ky + 2 · 31−ky − y3.

From (8), (17), (24) and (25), we derive the following equations:

2Lik(1− e−t)

t(e2t + 1)
cos yt =

∞∑
k=0

 [ k2 ]∑
m=0

(
k

2m

)
(−1)mT

(k)
k−2my

2m

 tk

k!
, (31)

and

2Lik(1− e−t)

t(e2t + 1)
sin yt =

∞∑
k=0

[ k−1
2 ]∑

m=0

(
k

2m+ 1

)
(−1)mT

(k)
k−2m−1y

2m+1

 tk

k!
. (32)

By (29), (30), (31), (32), we get

T (C)
n (y) =

[n2 ]∑
m=0

(
n

2m

)
(−1)my2mT

(k)
n−2m,

and

T (S)
n (y) =

[n−1
2 ]∑

m=0

(
n

2m+ 1

)
(−1)my2m+1T

(k)
n−2m−1.

From (13) and (29), we derive the following theorem:

Theorem 2.9. For n ≥ 0, we have

T (k,C)
n (x, y) =

n∑
l=0

(
n

l

)
xn−lT

(k,C)
l (y),

and

T (k,S)
n (x, y) =

n∑
l=0

(
n

l

)
xn−lT

(k,S)
l (y).
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By (13), (27), (31), and by using Cauchy product, we have

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

(
2Lik(1− e−t)

t(e2t + 1)

)
((et − 1) + 1)x cos yt

=
2Lik(1− e−t)

t(e2t + 1)
cos yt

∞∑
l=0

(
x

l

)
(et − 1)l

=

∞∑
l=0

(x)l
(et − 1)l

l!

(
2Lik(1− e−t)

t(e2t + 1)
cos yt

)

=

∞∑
l=0

(x)l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (k,C)
n (y)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,C)
n−i (y)

)
tn

n!
.

(33)

By comparing the coefficients on both sides of (33), we have the following theo-
rem:

Theorem 2.10. For n ≥ 0, we have

T (k,C)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,C)
n−i (y),

T (k,S)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,S)
n−i (y).

By (3), (27), (29) and by using Cauchy product, we have

∞∑
n=0

T (k,C)
n (x, y)

tn

n!

=

(
2Lik(1− e−t)

t(e2t + 1)

)
ext cos(yt)

=
(et − 1)r

r!

r!

tr

(
t

et − 1

)r
ext

∞∑
n=0

T (k,C)
n (y)

tn

n!

=
(et − 1)r

r!

( ∞∑
n=0

B(r)
n (x)

tn

n!

)( ∞∑
n=0

T (k,C)
n (y)

tn

n!

)
r!

tr

=

∞∑
n=0

(
n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T

(k,C)
n−l−i(y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:
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Theorem 2.11. For n ≥ 0 and r ∈ N, we have

T (k,C)
n (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
T

(k,C)
n−l−i(y)B

(r)
i (x),

T (k,S)
n (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
T

(k,S)
n−l−i(y)B

(r)
i (x).

By (4), (13), (29) and by using the Cauchy product, we get
∞∑
n=0

T (k,C)
n (x, y)

tn

n!
=

(
2Lik(1− e−t)

t(e2t + 1)

)
ext cos(yt)

=
(et − u)r

(1− u)r

(
1− u

et − u

)r
ext
(
2Lik(1− e−t)

t(e2t + 1)

)
cos yt

=

∞∑
n=0

H(r)
n (u, x)

tn

n!

r∑
i=0

(
r

i

)
eit(−u)r−i 1

(1− u)r

(
2Lik(1− e−t)

t(e2t + 1)

)
cos yt

=
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

∞∑
n=0

H(r)
n (u, x)

tn

n!

∞∑
n=0

T (k,C)
n (i, y)

tn

n!

=

∞∑
n=0

(
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

n∑
l=0

(
n

l

)
H

(r)
l (u, x)T

(k,C)
n−l (i, y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:

Theorem 2.12. For n ≥ 0 and r ∈ N, we have

T (k,C)
n (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT (k,C)

n−l (i, y)H
(r)
l (u, x),

T (k,S)
n (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT (k,S)

n−l (i, y)H
(r)
l (u, x).

By Theorem 2.11, Theorem 2.12, and Theorem 2.13 we have the following
corollary.

Corollary 2.13. For n ≥ 0 and r ∈ N, we have
∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,C)
n−i (y)

=
1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iH(r)

l (u, x)T
(k,C)
n−l (i, y)

=

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T

(k,C)
n−l−i(y).
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3. Zeros of the poly-cosine tangent and poly-sine polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the poly-cosine tangent polynomials T (k,C)

n (x, y) and poly-sine tangent
polynomials T (k,S)

n (x, y). The poly-cosine tangent polynomials T (k,C)
n (x, y) and

poly-sine tangent polynomials T (k,S)
n (x, y) can be determined explicitly. A few

of them are
T

(k,S)
0 (x, y) = 0,

T
(k,S)
1 (x, y) = y,

T
(k,S)
2 (x, y) = −3y + 21−ky + 2xy

T
(k,S)
3 (x, y) = 4y − 3 · 22−ky + 2 · 31−ky − 9xy + 3 · 21−kxy + 3x2y − y3,

T
(k,S)
4 (x, y) = 3y + 3 · 23−2ky + 7 · 21−ky + 3 · 23−ky − 8 · 31−ky − 4 · 32−ky,

+ 16xy − 3 · 24−kxy + 8 · 31−kxy − 18x2y + 3 · 22−kx2y

+ 4x3y + 6y3 − 22−ky3 − 4xy3,

and
T

(k,C)
0 (x, y) = 1,

T
(k,C)
1 (x, y) = −3

2
+ 2−k + x,

T
(k,C)
2 (x, y) =

4

3
− 22−k + 2 · 3−k − 3x+ 21−kx+ x2 − y2

T
(k,C)
3 (x, y) =

3

4
+ 3 · 21−2k + 7 · 2−1−k + 3 · 21−k − 2 · 31−k − 32−k + 4x

− 3 · 22−kx+ 2 · 31−kx− 9x2

2
+ 3 · 2−kx2 + x3 +

9y2

2

− 3 · 2−ky2 − 3xy2,

T
(k,C)
4 (x, y) = −14

5
− 3 · 23−2k − 3 · 24−2k − 5 · 22−k + 23−k + 10 · 31−k

+ 4 · 32−k + 24 · 5−k + 3x+ 3 · 23−2kx+ 7 · 21−kx+ 3 · 23−kx

− 8 · 31−kx− 4 · 32−kx+ 8x2 − 3 · 23−kx2 + 4 · 31−kx2 − 6x3

+ 22−kx3 + x4 − 8y2 + 3 · 23−ky2 − 4 · 31−ky2 + 18xy2

− 3 · 22−kxy2 − 6x2y2 + y4.
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We investigate the beautiful zeros of the poly-sine tangent polynomials T (k,S)
n (x, y)

by using a computer. We plot the zeros of the poly-sine tangent polynomials
T

(k,S)
n (x, y) for n = 50 (Figure 1). In Figure 1(top-left), we choose n = 50, k =
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Figure 1. Zeros of T (k,S)
n (x, y)

−2 and x = 2. In Figure 1(top-right), we choose n = 50, k = −1 and x = 2. In
Figure 1(bottom-left), we choose n = 50, k = 1 and x = 4. In Figure 1(bottom-
right), we choose n = 50, k = 2 and x = 6.
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Stacks of zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50 from a 3-D structure are pre-

sented(Figure 2). In Figure 2(top-left), we choose k = −2 and x = 2. In Figure

Figure 2. Stacks of zeros of T (k,S)
n (x, y) for 1 ≤ n ≤ 50

2(top-right), we choose k = −1 and x = 2. In Figure 2(bottom-left), we choose
k = 1 and x = 4. In Figure 2(bottom-right), we choose k = 2 and x = 6.
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The plot of real zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50 structure are presented(Figure

3). In Figure 3(top-left), we choose k = −2 and x = 2. In Figure 3(top-right),

Figure 3. Stacks of zeros of T (k,S)
n (x, y) for 1 ≤ n ≤ 50

we choose k = −1 and x = 2. In Figure 3(bottom-left), we choose k = 1 and
x = 4. In Figure 3(bottom-right), we choose k = 2 and x = 6.
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We investigate the beautiful zeros of the poly-cosine tangent polynomials
T

(k,C)
n (x, y) by using a computer. We plot the zeros of the poly-cosine tangent

polynomials T (k,C)
n (x, y) for n = 50 (Figure 4). In Figure 4(top-left), we choose
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Figure 4. Zeros of T (k,S)
n (x, y)

n = 50, k = −2 and y = 2. In Figure 4(top-right), we choose n = 50, k = −1
and y = 2. In Figure 4(bottom-left), we choose n = 50, k = 1 and y = 4. In
Figure 4(bottom-right), we choose n = 50, k = 2 and y = 6.
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Stacks of zeros of T (k,C)
n (x, y) for 1 ≤ n ≤ 50 from a 3-D structure are

presented(Figure 5). In Figure 5(top-left), we choose k = −2 and y = 2. In

Figure 5. Stacks of zeros of T (k,C)
n (x, y) for 1 ≤ n ≤ 50

Figure 5(top-right), we choose k = −1 and y = 2. In Figure 5(bottom-left), we
choose k = 1 and y = 4. In Figure 5(bottom-right), we choose k = 2 and y = 6.
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The plot of real zeros of T (k,C)
n (x, y) for 1 ≤ n ≤ 50 structure are pre-

sented(Figure 6). In Figure 6(top-left), we choose k = −2 and y = 2. In

Figure 6. Stacks of zeros of T (k,C)
n (x, y) for 1 ≤ n ≤ 50

Figure 6(top-right), we choose k = −1 and y = 2. In Figure 6(bottom-left), we
choose k = 1 and y = 4. In Figure 6(bottom-right), we choose k = 2 and y = 6.
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Next, we calculated an approximate solution satisfying poly-sine tangent poly-
nomials T (k,S)

n (x, y) = 0 for y ∈ R. The results are given in Table 1.

Table 1. Approximate solutions of T (2,S)
n (4, y) = 0

degree n y

1 0

2 0

3 4.4347, 0, 4.4347

4 −2.1320, 0, 2.1320

5 −8.0162, −1.1386, 0, 1.1386, 8.0162

6 −3.8352, −0.66523, 0, 0.66523, 3.8352

7 −11.547, −1.6773, −1.2360, 0, 1.2360, 1.6773, 11.547

We also calculated an approximate solution satisfying poly-cosine tangent
polynomials T (k,C)

n (x, y) = 0 for x ∈ R.

Table 2. Approximate solutions of T (2,C)
n (x, 6) = 0

degree n x

1 1.5000

2 −4.5759, 7.5759

3 −9.0238, 1.5000, 12.024

4 −13.146, −1.1430, 4.1430, 16.146

5 −17.144, −3.1427, 1.5000, 6.1427, 20.1442

6 −21.082, −4.8708, −0.29881, 3.2988, 7.8708, 24.082

References
1. G.E. Andrews, R. Askey, R. Roy, Special Functions, Vol. 71, Combridge Press, Cambridge,

UK, 1999.
2. R. Ayoub, Euler and zeta function, Amer. Math. Monthly 81 (1974), 1067-1086.
3. L. Comtet, Advances Combinatorics, Riedel, Dordrecht, 1974.
4. T. Kim, C.S. Ryoo, Some identities for Euler and Bernoulli polynomials and their zeros,

Axioms 7 (2018), doi:10.3390/axioms7030056.
5. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App.

Math. & Informatics 32 (2014), 315-322.
6. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7

(2013), 447 - 454.



Some properties of poly-cosine tangent and poly-sine tangent polynomials 391

7. C.S. Ryoo, Modified degenerate tangent numbers and polynomials, Global Journal of Pure
and Applied Mathematics 12 (2016), 1567-1574.

8. C.S. Ryoo, On poly-tangent numbers and polynomials and distribution of their zeros, Global
Journal of Pure and Applied Mathematics 12 (2016), 4511–4525.

9. C.S. Ryoo, Symmetric identities for (p, q)-analogue of tangent zeta function, Symmetry 10
(2018), doi:10.3390/sym10090395.

10. C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and poly-
nomials and distribution of their zeros, Advances in Difference Equations 213 (2017),
doi:10.1186/s13662-017-1275-2.

11. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European
J. Combin. 31 (2010), 1689-1705.

12. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their ap-
plications, Journal of Number Theory 128 (2008), 738-758

Cheon Seoung Ryoo received Ph.D. degree from Kyushu University. His research interests
focus on the numerical verification method, scientific computing, p-adic functional analysis,
and analytic number theory. More recently, he has been working with differential equations,
dynamical systems, quantum calculus, and special functions.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: ryoocs@hnu.kr


