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THE QUADRATIC HYPONORMALITY OF ONE-STEP
EXTENSION OF THE BERGMAN-TYPE SHIFT

CHUNJI LI∗ AND WENTAO QI

Abstract. Let p > 1 and α[p](x) :
√
x,

√
p

2p−1
,
√

2p−1
3p−2

, · · · , with 0 < x ≤
p

2p−1
. In [10], the authors considered the subnormality, n-hyponormality

and positive quadratic hyponormality of Wα[p](x). By continuing to study,
in this paper, we give a sufficient condition of quadratic hyponormality of
Wα[p](x). Finally, we give an example to characterize the gaps of Wα[p](x)

distinctively.
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1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. We recall
some basic definitions of some classes of operators. We say that T is normal
if T ∗T = TT ∗; hyponormal if T ∗T ≥ TT ∗, and subnormal if T has a normal
extension. For S, T ∈ B(H), let [S, T ] := ST − TS. We say that an n-tuple
T = (T1, . . . , Tn) of bounded linear operators on B(H) is hyponormal if the
operator matrix ([T ∗

j , Ti])
n
i,j=1 is positive on the direct sum of n copies of H.

For any k ∈ N, we say T ∈ B(H) is (strongly) k-hyponormal if (I, T, . . . , T k)
is hyponormal. It is well-known that T is subnormal if and only if T is k-
hyponormal for all k ∈ N. An operator T in B(H) is said to be weakly n-
hyponormal if p(T ) is hyponormal for any polynomial p with degree less than or
equal to n. And an operator T is polynomially hyponormal if p(T ) is hyponormal
for every polynomial p. In particular, the quadratical hyponormality (i.e. weak
2-hyponormality) of weight shift has been considered in detail in [1], [2], [4] and
[7].
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16 C. Li and W. Qi

Recall that let α := {αn}∞n=0 be a bounded sequence in the set R+. The (uni-
lateral) weighted shift Wα acting on ℓ2(N0), with an orthonormal basis {ei}∞i=0,
is defined by Wαen := αnen+1 for all n ∈ N0 := N ∪ {0}. It follows straight-
forward that Wα is hyponormal if and only if the weight sequence {αn}∞n=0 is
non-decreasing.

If a weight sequence α = {αn}∞n=0 is given by αn =
√

n+1
n+2 (n ≥ 0), then

the corresponding weighted shift is called the Bergman shift. Let x > 0 and
α(x) : α0 =

√
x, αn =

√
n+2
n+3 (n ≥ 1). The k-hyponormality, subnormality and

quadratic hyponormality of Wα(x) were considered in detail in [3], [4], [5], [6], [7]
and [9] etc. In [8], the authors considered the backward extension of Bergman-
type shift α[p] (x) :

√
x,
√

1
p ,
√

p
2p−1 ,

√
2p−1
3p−2 , . . . , with p > 1. Furthermore, let

m ∈ N0 = N ∪ {0} , p > 1 and α[m,p] (x) :
√
x,
{√

(m+n−1)p−(m+n−2)
(m+n)p−(m+n−1)

}∞

n=1
,

in [10], the authors considered the subnormality, k-hyponormality, and positive
quadratic hyponormality ofWα[m,p](x), which extends all the results on Bergman
weighted shift Wα(x) with m ∈ N, and α (x) :

√
x,
√

m
m+1 ,

√
m+1
m+2 ,

√
m+2
m+3 , . . . .

By continuing to study, in this paper, we give a sufficient condition of quadratic
hyponormality of Wα[p](x) with α[p] (x) :

√
x,
√

p
2p−1 ,

√
2p−1
3p−2 , . . . . Finally, we

give an example to characterize the gaps of Wα[p](x) distinctively.
All of the calculations in this paper were taken by using the software Scientific

WorkPlace [11].

2. Preliminaries and Notations

We know that a weighted shift Wα is quadratically hyponormal if Wα+ sW 2
α

is hyponormal for arbitrary complex number s([7]), that is,

M (s) := [
(
Wα + sW 2

α

)∗
,Wα + sW 2

α] ≥ 0

for arbitrary complex number s. We let {ei}∞i=0 be an orthonormal basis for
ℓ2(N0) and

Mn (s) := Pn[
(
Wα + sW 2

α

)∗
,Wα + sW 2

α]Pn,

where Pn is the orthogonal projection onto the subspace generated by {ei}ni=0.
Then Mn (s) has the following form

Mn (s) =



ρ0 κ0 0 · · · 0 0
κ0 ρ1 κ1 · · · 0 0
0 κ1 ρ2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · ρn−1 κn−1

0 0 0 · · · κn−1 ρn


,
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where 
ρn := σn + |s|2δn,
κn := s

√
ϕn,

σn := α2
n − α2

n−1,
δn := α2

nα
2
n+1 − α2

n−1α
2
n−2,

ϕn := α2
n(α

2
n+1 − α2

n−1)
2,

for any nonnegative integer n and αn := 0 for negative integer n.
Hence,Wα is quadratically hyponormal if and only ifMn (s) ≥ 0 for arbitrary

complex number s and n ∈ N0. Let t := |s|2 and dn(t) := detMn (t) which is a

polynomial in t of degree n + 1, with Maclaurin expansion dn(t) :=
n+1∑
k=0

θn,kt
k.

It is easy to find that dn(t) satisfies

d0(t) = ρ0,

d1(t) = ρ0ρ1 − |κ0|2,
dn+2(t) = ρn+2dn+1(t)− |κn+1|2dn(t), (n ≥ 0) .

Also we can get the followings

θn,0 = σ0 · · ·σn, θn,n+1 = δ0 · · · δn, θ1,1 = σ1δ0 + σ0δ1 − ϕ0,
θn+2,k = σn+2θn+1,k + δn+2θn+1,k−1 − ϕn+1θn,k−1,

(1)

for n ≥ 0 and k ≥ 1.

Lemma 1. θn,1 = σ0 · · ·σn−1α
2
n(α

2
n+1 − α2

n−1) ≥ 0, for all n ≥ 1.

3. Key Lemmas

In this section, we consider an one-step extension Wα[p](x) of the Bergman-
type shift, where

α[p](x) :
√
x,

√
p

2p− 1
,

√
2p− 1

3p− 2
,

√
3p− 2

4p− 3
, · · · , (2)

where p > 1 and 0 < x ≤ p
2p−1 .We have θn,k ≥ 0 for all 0 ≤ n ≤ 4 and 0 ≤ k ≤ 4

with 0 ≤ k ≤ n+ 1 except for θ4,3.{
θ0,0 = x > 0,
θ0,1 = p

2p−1x > 0,
θ1,0 = x

(
p

2p−1 − x
)
≥ 0,

θ1,1 = xp
2p−1

(
2p−1
3p−2 − x

)
> 0,

θ1,2 = p2x
(3p−2)(2p−1) > 0,
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θ2,0 = (p−1)2

(3p−2)(2p−1)x
(

p
2p−1 − x

)
≥ 0,

θ2,1 = 2(p−1)2x
(4p−3)(3p−2)

(
p

2p−1 − x
)
≥ 0,

θ2,2 = xp (p− 1)
2 (4p−1)−(4p−2)x

(4p−3)(3p−2)(2p−1)2
> 0,

θ2,3 = xp2
(2p−1)2−(4p2−3p)x
(4p−3)(3p−2)(2p−1)2

> 0,

θ3,0 = x(p−1)4

(4p−3)(3p−2)2(2p−1)

(
p

2p−1 − x
)
≥ 0,

θ3,1 = 2(p−1)4x
(5p−4)(4p−3)(3p−2)(2p−1)

(
p

2p−1 − x
)
≥ 0,

θ3,2 =
(p−1)4x((11p2−4p)−(22p2−24p+8)x)

(5p−4)(4p−3)(3p−2)2(2p−1)2
> 0,

θ3,3 =
p(p−1)2x((16p3−31p2+20p−4)−(21p3−44p2+32p−8)x)

(5p−4)(4p−3)(3p−2)2(2p−1)2
> 0,

θ3,4 =
4p2(p−1)2x((2p−1)2−(4p2−3p)x)

(5p−4)(4p−3)(3p−2)2(2p−1)2
> 0,

θ4,0 = (p−1)6x

(5p−4)(4p−3)2(3p−2)2(2p−1)

(
p

2p−1 − x
)
≥ 0,

θ4,1 = 2x(p−1)6

(6p−5)(5p−4)(4p−3)(3p−2)2(2p−1)

(
p

2p−1 − x
)
≥ 0,

θ4,2 =
x(p−1)6((18p2−11p)−(36p2−46p+16)x)
(6p−5)(5p−4)(4p−3)2(3p−2)2(2p−1)2

≥ 0,

θ4,3 =
(p−1)4x((44p4−98p3+71p2−16p)−(94p4−277p3+312p2−160p+32)x)

(6p−5)(5p−4)(4p−3)2(3p−2)2(2p−1)2
,

θ4,4 =
4(p−1)4px(16p3−31p2+20p−4)−(3p−2)(7p2−10p+4)x

(6p−5)(5p−4)(4p−3)2(3p−2)2(2p−1)2
≥ 0,

θ4,5 =
16xp2(p−1)4((2p−1)2−(4p2−3p)x)

(6p−5)(5p−4)(4p−3)2(3p−2)2(2p−1)2
≥ 0.

Considering the Wα[p](x), we can obtain the following lemmas.

Lemma 2. Let α[p] (x) be as in (2). Then θn,2 ≥ 0 for all n ≥ 1.
Proof. For n ≥ 2, by (1) we have

δn+2θn+1,1 − ϕn+1θn,1

= δn+2σ0 · · ·σnα2
n+1(α

2
n+2 − α2

n)− ϕn+1σ0 · · ·σn−1α
2
n(α

2
n+1 − α2

n−1)

= σ0 · · ·σn−1(δn+2σnα
2
n+1(α

2
n+2 − α2

n)− ϕn+1α
2
n(α

2
n+1 − α2

n−1))

=
24 (p− 1)

8
σ0 · · ·σn−1

(∆ + 4p− 3) (∆ + 2p− 1)
2
(∆ + p)

2
(∆ + 1) (∆ + 3p− 2)

2 ≥ 0,

with ∆ = n (p− 1) . It follows that if θn+1,2 ≥ 0, then for n ≥ 2,

θn+2,2 = un+2θn+1,2 + δn+2θn+1,1 − ϕn+1θn,1 ≥ 0.

Since θn,2 ≥ 0 for n = 1, 2, 3 with 0 < x ≤ p
2p−1 and p > 1, we can get θn,2 ≥ 0

for all n ≥ 1. �

Lemma 3. Let α[p] (x) be as in (2). Then θn,k = δnθn−1,k−1 for all n ≥ 4, k ≥ 4.
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Proof. Clearly, σn+1δn = ϕn ([10], Lemma 5.1), for all n ≥ 3. So for all n ≥ 4,
it is simple that

θn,k = σnθn−1,k + δnθn−1,k−1 − ϕn−1θn−2,k−1

= δnθn−1,k−1 − ϕn−1θn−2,k−1

+σn [σn−1θn−2,k + δn−1θn−2,k−1 − ϕn−2θn−3,k−1]

= δnθn−1,k−1 + σn [σn−1θn−2,k − ϕn−2θn−3,k−1]

= δnθn−1,k−1 + σn · · ·σ4hk, with
hk := σ3θ2,k − ϕ2θ1,k−1, k ≥ 1.

Since hk = 0 for all k ≥ 4. Thus θn,k = δnθn−1,k−1 for all n ≥ 4, k ≥ 4. �

Lemma 4. Let α[p] (x) be as in (2). If θn,3 ≥ 0, then θn+1,3 ≥ 0 for n ≥ 4.
Proof. Since ([10], Lemma 5.1) δn+1σn > ϕn, and for all n ≥ 4,

δn+1θn,2 − ϕnθn−1,2

= δn+1(σnθn−1,2 + δnθn−1,1 − ϕn−1θn−2,1)− ϕnθn−1,2

= (δn+1σn − ϕn)θn−1,2 + δn+1(δnθn−1,1 − ϕn−1θn−2,1) ≥ 0,

and δnθn−1,1 − ϕn−1θn−2,1 ≥ 0 by the proof of Lemma 2. Therefore if θn,3 ≥ 0,
then

θn+1,3 = σn+1θn,3 + δn+1θn,2 − ϕnθn−1,2 ≥ 0

for all n ≥ 4. �

Through Lemma 1, Lemma 2, Lemma 3 and Lemma 4, it follows that θn,k ≥ 0
for all n, k ≥ 0 with 0 ≤ k ≤ n + 1 if and only if θn,3 ≥ 0 for all n ≥ 4, or
equivalently θ4,3 ≥ 0. See Fig. 1 below.

Figure 1: The positivity of θn,i.



20 C. Li and W. Qi

Proposition 5([10]). Let α[p] (x) be as in (2).
(a) If 1 < p ≤ 25+

√
241

12 , then Wα[p](x) is positively quadratically hyponormal if
and only if 0 < x ≤ p

2p−1 .
(b) If p > 25+

√
241

12 , then Wα[p](x) is positively quadratically hyponormal if and
only if 0 < x ≤ ξ1 := 44p4−98p3+71p2−16p

94p4−277p3+312p2−160p+32 .

Remark. When 1 < p ≤ 25+
√
241

12 , θ4,3 ≥ 0 ⇔ 0 < x ≤ p
2p−1 and when p >

25+
√
241

12 , θ4,3 ≥ 0 ⇔ 0 < x ≤ ξ1.

According to ([10]), it has the other interesting results.

Proposition 6. Let α[p] (x) be as in (2).
(a) Wα[p](x) is subnormal if and only if 0 < x ≤ 1

p .
(b) Wα[p](x) is n-hyponormal if and only if 0 < x ≤ 1

p

∏n
l=1[lp−(l−1)]2∏n

l=1[lp−(l−1)]2−(n!)2(p−1)2n .

4. The Quadratic Hyponormality of Wα[p](x)

Let α[p] (x) be as in (2). Proposition 5 obtained equivalent condition of pos-
itive quadratical hyponormality of Wα[p](x). In this section we give a sufficient
condition of the quadratical hyponormality of Wα[p](x). Let

ξ0 := p
2p−1 ,

ξ1 := 44p4−98p3+71p2−16p
94p4−277p3+312p2−160p+32 ,

ξ2 := 72p4−181p3+154p2−44p
151p4−478p3+576p2−312p+64 ,

ξ3 := 856p5−2791p4+3418p3−1857p2+376p
1809p5−7126p4+11335p3−9104p2+3696p−608 .

(3)

Lemma 7. Let α[p] (x) be as in (2).
(1) If 1 < p ≤ 15+

√
85

7 (≈ 3.4599), then θ5,3 ≥ 0 if and only if 0 < x ≤ ξ0.

(2) If p > 15+
√
85

7 , then θ5,3 ≥ 0 if and only if 0 < x ≤ ξ2.
Proof. In fact
θ5,3 = σ5θ4,3 + δ5θ4,2 − ϕ4θ3,2

= x (ξ2 − x)
(p− 1)

6 (
151p4 − 478p3 + 576p2 − 312p+ 64

)
(7p− 6) (6p− 5) (5p− 4)

2
(4p− 3)

2
(3p− 2)

2
(2p− 1)

2 .

And ξ2 < ξ0 if and only if p > 15+
√
85

7 . Thus we have our conclusions. �

Note that dn(t) ≥ 0 for n = 0, 1, 2, 3. Observe by Lemma 3 that if n ≥ 6,
then

θn,n−2t
n−2 + θn,n−1t

n−1 + θn,nt
n = δn · · · δ6tn−5(θ5,3t

3 + θ5,4t
4 + θ5,5t

5).
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Thus if θ5,3t3 + θ5,4t
4 + θ5,5t

5 ≥ 0 for all t ≥ 0, then dn(t) ≥ 0 for all n ≥ 6 and
t ≥ 0 because other Maclaurin coefficients are nonnegative. So we will verify
θn,n−2t

n−2 + θn,n−1t
n−1 + θn,nt

n ≥ 0 for n = 4, 5. That is ([3]),

θ4,2t
2 + θ4,3t

3 + θ4,4t
4 ≥ 0, and θ5,3t3 + θ5,4t

4 + θ5,5t
5 ≥ 0,

for all t ≥ 0.

Theorem 8. Let α[p] (x) be as in (2).
(a) If 1 < p ≤ p1, then Wα[p](x) is quadratically hyponormal if and only if
0 < x ≤ ξ0.
(b) If p > p1 and 0 < x ≤ ξ3, then Wα[p](x) is quadratically hyponormal, where

p1 =
494 + 2

√
62743 cosω

291
(≈ 3.4188) , with ω =

1

3
arccos

(
15684659

3936684049

√
62743

)
.

(4)
Proof. From Proposition 5, we need to discuss the case of p > 25+

√
241

12 (≈ 3.377) .
By Lemma 4 and Lemma 7, we know that c(n, 3) ≥ 0 for all n ≥ 5, in one of the
following two cases,

Case 1. p > 15+
√
85

7 and 0 < x ≤ ξ2;

Case 2. 25+
√
241

12 < p ≤ 15+
√
85

7 and 0 < x ≤ ξ0.

Under Case 1. We have the following results.

Claim I. If p > 15+
√
85

7 and ξ1 < x ≤ ξ3, then θ4,3 < 0 and θ4,2t
2 + θ4,3t

3 +

θ4,4t
4 ≥ 0.

Proof of Claim I. Under the condition of the Claim, we can get

σ5θ4,3 + δ5θ4,2 =
(p− 1)

6
xΦ1

(7p− 6) (6p− 5)
2
(5p− 4)

2
(4p− 3)

2
(3p− 2)

2
(2p− 1)

2 ≥ 0,

where

Φ1 =
(
740p5 − 2438p4 + 2985p3 − 1602p2 + 316p

)
−
(
1522p5 − 6055p4 + 9662p3 − 7744p2 + 3128p− 512

)
x.

Since θ4,2 ≥ 0 and θ4,3 < 0, it follows that if 0 < t ≤ 7p−6
4(6p−5) , where

σ5

δ5
= 7p−6

4(6p−5) ,
then θ4,2 + θ4,3t ≥ 0. Since θ4,4 ≥ 0, we have θ4,2t2 + θ4,3t

3 + θ4,4t
4 ≥ 0.

We also get that

σ5θ4,4 + δ5θ4,3 =
4 (p− 1)

6
xΦ2

(7p− 6) (6p− 5)
2
(5p− 4)

2
(4p− 3)

2
(3p− 2)

2
(2p− 1)

2 ≥ 0.

where

Φ2 =
(
376p5 − 1121p4 + 1242p3 − 599p2 + 104p

)
−
(
711p5 − 2566p4 + 3745p3 − 2768p2 + 1040p− 160

)
x.
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So if t > 7p−6
4(6p−5) , then tθ4,4 + θ4,3 ≥ 0. Since θ4,2 ≥ 0, we have that θ4,2t2 +

θ4,3t
3 + θ4,4t

4 ≥ 0. N

Claim II. If p > 15+
√
85

7 and ξ1 < x ≤ ξ3, then θ5,3t3 + θ5,4t
4 + θ5,5t

5 ≥ 0.
Proof of Claim II. By the same argument as Claim I, it suffices to prove that if
ξ1 < x ≤ ξ3, then σ6θ5,4 + δ6θ5,3 ≥ 0 and σ6θ5,5 + δ6θ5,4 ≥ 0.

Indeed, a straightforward calculation shows that
σ6θ5,4 + δ6θ5,3

=
4x (p− 1)

8
Φ3

(8p− 7) (7p− 6)
2
(6p− 5)

2
(5p− 4)

2
(4p− 3)

2
(3p− 2)

2
(2p− 1)

2 ≥ 0,

where
Φ3 =

(
856p5 − 2791p4 + 3418p3 − 1857p2 + 376p

)
−
(
1809p5 − 7126p4 + 11 335p3 − 9104p2 + 3696p− 608

)
x,

and
σ6θ5,5 + δ6θ5,4

=
32x (p− 1)

8
Φ4

(8p− 7) (7p− 6)
2
(6p− 5)

2
(5p− 4)

2
(4p− 3)

2
(3p− 2)

2
(2p− 1)

2 ≥ 0.

where
Φ4 =

(
218p5 − 655p4 + 731p3 − 355p2 + 62p

)
−
(
413p5 − 1501p4 + 2205p3 − 1640p2 + 620p− 96

)
x.

So θ5,3t3 + θ5,4t
4 + θ5,5t

5 ≥ 0. N

By Claim I and Claim II, we have proved that if p > 15+
√
85

7 and 0 < x ≤ ξ3,
then Wα[p](x) is quadratically hyponormal.

Under Case 2. If 25+
√
241

12 < p ≤ 15+
√
85

7 and ξ1 < x ≤ ξ3 (< ξ2) , then θ4,3 <
0, θ5,3 ≥ 0. By Lemma 2, θn,n−1 < 0 for all n ≥ 4. Note that if 25+

√
241

12 < p ≤ p1,
then ξ3 ≥ ξ0, and if p1 < p ≤ 15+

√
85

7 , then ξ3 < ξ0. By the same way as Claim I
and Claim II, we can easily prove that if 25+

√
241

12 < p ≤ p1 and ξ1 < x ≤ ξ0, or
if p1 < p ≤ 15+

√
85

7 and ξ1 < x ≤ ξ3, then θn,n−2t
n−2 + θn,n−1t

n−1 + θn,nt
n ≥ 0

for n = 4, 5.
Therefore, if 1 < p ≤ p1, then Wα[p](x) is quadratically hyponormal if and

only if 0 < x ≤ ξ0. If p > p1 and 0 < x ≤ ξ3, then Wα[p](x) is quadratically
hyponormal. �

Remark. Let ξ0, ξ1, ξ2, ξ3 as in (3).
(1) When 25+

√
241

12 < p < p1, we get ξ1 < ξ0 < ξ3 < ξ2.

(2) When p1 < p < 15+
√
85

7 , we get ξ1 < ξ3 < ξ0 < ξ2.
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(3) When p > 15+
√
85

7 , we get ξ1 < ξ3 < ξ2 < ξ0.

Example 9. If p = 4, then α[4](x) :
√
x,
√

4
7 ,
√

7
10 ,
√

10
13 , · · · . By the results as

above, we know that
• If 0 < x ≤ 22037

38882 (≈ 0.56677) , thenWα[4](x) is quadratically hyponormal.
(By Theorem 8)

• Wα[4](x) is positively quadratically hyponormal if and only if 0 < x ≤
379
670 (≈ 0.56567) . (By Proposition 5)

• If 379
670 < x ≤ 22037

38882 , then Wα[4](x) is quadratically hyponormal but not
positively quadratically hyponormal. In particular, Wα[4](x0) is quadrat-
ically hyponormal but not positively quadratically hyponormal, here
x0 = 0.566 = 566

1000 = 283
500 .

• Wα[4](x) is 2-hyponormal if and only if 0 < x ≤ 49
115 (≈ 0.426 09) .

• Wα[4](x) is 3-hyponormal if and only if 0 < x ≤ 4900
13039 (≈ 0.37580) .

• Wα[4](x) is 4-hyponormal if and only if 0 < x ≤ 207025
591904 (≈ 0.34976) .

• Wα[4](x) is n-hyponormal if and only if 0 < x ≤ 1
4

1

1−( 3n(n!)
4·7·····(3n+1) )

2 .

• Wα[4](x) is subnormal if and only if 0 < x ≤ 1
4 .

5. Conclusion

After the subnormality, n-hyponormalty, and positively quadratic hyponor-
mality [10], this paper considered the quadratic hyponormality of W [p]

α (x) . The
cubic hyponormality, semi-weakly hyponormality and other topics, also in par-
ticular, new techniques for solving these problems can be considered for further
research. We leave them to interested readers.
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