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SOME PROPERTIES AND IDENTITIES FOR (p, q)-GENOCCHI
POLYNOMIALS COMBINING (p, q)-COSINE FUNCTION

JUNG YOOG KANG

Abstract. The purpose of this paper is to find some properties and iden-
tities for (p, q)-cosine Genocchi polynomials. This polynomials which is
one of Appell polynomials, have multifarious relations of (p, q)-other poly-
nomials.
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1. Introduction

We begin by introducing several definitions related to (p, q)-number used in
this paper(see [1-3, 8, 15-16]). For any n ∈ N, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
, where p ̸= q, (1.1)

which is a natural generalization of the q-number. From equation (1.1), we note
that [n]p,q = [n]q,p.

Definition 1.1. For n ≥ k, the Gaussian binomial coefficients are defined by[
m
r

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
, (1.2)

where m and r are non-negative integers.

We note [n]p,q! = [n]p,q[n − 1]p,q · · · [2]p,q[1]p,q, where n ∈ N. For r = 0, the
value is 1 since the numerator and the denominator are both empty products.
There are (p, q)-analogues of the binomial formula and this definition has a great
number of properties, see [4].
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Definition 1.2. The (p, q)-analogues of (x− a)n and (x+ a)n are defined by

(i) (x⊖ a)np,q =

{
1, if n = 0

(x− a)(px− qa) · · · (pn−1x− qn−1a), if n ≥ 1

(ii) (x⊕ a)np,q

=

{
1, if n = 0

(x+ a)(px+ qa) · · · (pn−2x+ qn−2a)(pn−1x+ qn−1a), if n ≥ 1

=

n∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k.

(1.3)

Definition 1.3. Two forms of (p, q)-exponential functions can be expressed as

ep,q(x) =

∞∑
n=0

p(
n
2)

xn

[n]p,q!
, Ep,q(x) =

∞∑
n=0

q(
n
2)

tn

[n]p,q!
. (1.4)

From Definition 1.3, we can find an important property, ep,q(x)Ep,q(−x) = 1,
see [5-6, 8, 11, 15-16]. Moreover, U. Duran, M. Acikgos and S. Araci define
ẽp,q(x) in [7] as the follows:

ẽp,q(x) =

∞∑
n=0

xn

[n]p,q!
. (1.5)

Definition 1.4. Let i =
√
−1 ∈ C. Then the (p, q)-cosine functions are defined

by

cosp,q(x) =
ep,q(ix) + ep,q(−ix)

2
, COSp,q(x) =

Ep,q(ix) + Ep,q(−ix)
2

,

(1.6)
where, COSp,q(x) = cosp−1,q−1(x).

From equation (1.5), Definitions 1.3 and 1.4, we can remark
(i) Ep,q(ity) = COSp,q(ty) + iSINp,q(ty)

(ii) Ep,q(−ity) = COSp,q(ty)− iSINp,q(ty),

(i) ẽp,q((x⊕ y)p,q) =

∞∑
n=0

(x⊕ y)
n
p,q

[n]p,q!
= ep,q(x)Ep,q(y)

(ii) ẽp,q((x⊖ y)p,q) =

∞∑
n=0

(x⊖ y)
n
p,q

[n]p,q!
= ep,q(x)Ep,q(−y)

Definition 1.5. For x ̸= 0, the (p, q)-derivative of a function f with respect to
x is defined by

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, (1.7)

and (Dp,qf)(0) = f ′(0), prove that f is differentiable at 0, and it is clear that
Dp,qx

n = [n]p,qx
n−1.
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Definition 1.6. Let |p/q| < 1 and x, y ∈ R. (p, q)-cosine Bernoulli polynomials
CBn,p,q(x, y) and (p, q)-cosine Euler polynomials CEn,p,q(x, y) are respectively
defined by the following, see [13-14]:

∞∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
=

t

ep,q(t)− 1
ep,q(tx)COSp,q(ty),

∞∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
=

2

ep,q(t) + 1
ep,q(tx)COSp,q(ty).

Definition 1.7. The q-cosine Genocchi polynomials is defined by
∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty).

From the Definition 1.7, we note that CGn,q(x, y) = CGn(x, y) when q → 1,
see [9]. The main goal of this paper is to find some properties of (p, q)-cosine
Genocchi polynomials. In Section 2, we define the (p, q)-cosine Genocchi poly-
nomials and find some properties. Moreover, we derive some relation between
(p, q)-cosine Genocchi polynomials and (p, q)-other polynomials.

2. Main results

Definition 2.1. Let |q/p| < 1 with x, y ∈ R. Then, (p, q)-cosine Genocchi
polynomials is defined by the following.

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!
=

2t

ep,q(t) + 1
ep,q(tx)COSp,q(ty).

From the generating function of (p, q)-cosine Genocchi polynomials, we can
note that

(i) lim
q→1

∞∑
n=0

CGn,1,q(x, y)
tn

[n]1,q!
=

∞∑
n=0

CGn(x, y)
tn

n!
=

2t

et + 1
etxcos(ty),

where CGn(x, y) is the cosine Genocchi polynomials.

(ii)
∞∑
n=0

CGn,1,q(x, y)
tn

[n]1,q!
=

∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty),

where CGn,q(x, y) is the q-cosine Genocchi polynomials, see [9].

Theorem 2.2. For |q/p| < 1, we obtain

CGn,p,q(x, y) =

n∑
k=0

[
n
k

]
p,q

(x⊕ iy)kp,q + (x⊖ iy)kp,q
2

Gn−k,p,q,

where Gn,p,q is the (p, q)-Genocchi numbers.
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Proof. In [6], we can see (p, q)-Genocchi numbers such as
∞∑
n=0

Gn,p,q
tn

[n]p,q!
=

2t

ep,q(t) + 1
.

If we multiple ẽp,q(t(x ⊕ iy)p,q) in the generating function of (p, q)-Genocchi
numbers, then we have

∞∑
n=0

Gn,p,q
tn

[n]p,q!
ẽp,q(t(x⊕ iy)p,q)

=

∞∑
n=0

Gn,p,q
tn

[n]p,q!

∞∑
n=0

(x⊕ iy)np,q
tn

[n]p,q!

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

(x⊕ iy)kp,qGn−k,p,q

)
tn

[n]p,q!
,

(2.1)

and
2t

ep,q(t) + 1
ẽp,q(t(x⊕ iy)p,q) =

2t

ep,q(t) + 1
ep,q(tx)Ep,q(ity)

=
2t

ep,q(t) + 1
ep,q(tx)(COSp,q(ty) + iSINp,q(ty)).

(2.2)
From Equations (2.1) and (2.2), we derive the following:

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

(x⊕ iy)kp,qGn−k,p,q
tn

[n]p,q!

=
2t

ep,q(t) + 1
ep,q(tx)(COSp,q(ty) + iSINp,q(ty)).

(2.3)

By applying a similar process, we obtain
∞∑
n=0

n∑
k=0

[
n
k

]
p,q

(x⊖ iy)kp,qGn−k,p,q
tn

[n]p,q!

=
2t

ep,q(t) + 1
ep,q(tx)(COSp,q(ty)− iSINp,q(ty)).

(2.4)

From Equations (2.3) and (2.4), we find the required result. �
To find some identities of the (p, q)-cosine Genocchi polynomials, we note

∞∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
= ep,q(tx)COSp,q(ty), see [13, 14]. (2.5)

Theorem 2.3. Let k be a non-negative integer. Then we find

CGn,p,q(x, y) =

n∑
k=0

[
n
k

]
p,q

Gk,p,qCn−k,p,q(x, y),

where Gn,p,q is the (p, q)-Genocchi numbers, see [6].
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Proof. Using the generating function of the (p, q)-cosine Genocchi polynomials
and Equation (2.5), we have a relation as

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!
=

∞∑
n=0

Gn,p,q(x, y)
tn

[n]p,q!

∞∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

Gk,p,qCn−k,p,q(x, y)

)
tn

[n]p,q!
.

From the above equation, we can derive the desired result. �
Corollary 2.4. Setting p = 1 in Theorem 2.3, the following equation hold

CGn,q(x, y) =

n∑
k=0

[
n
k

]
q

Gk,qCn−k,q(x, y),

where Gn,q is the q-Genocchi numbers and
∑∞
n=0 Cn,q(x, y)

tn

[n]q !
= eq(tx)COSq(ty),

see [6, 9-10, 12].

Theorem 2.5. Let n be a non-negative integer. Then we have

2[n]p,qCn−1,p,q(x, y) =

n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CGk,p,q(x, y) + CGk,p,q(x, y).

Proof. Consider that ep,q(t) ̸= −1 in the generating function of the (p, q)-
cosine Genocchi polynomials. Then, we find

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!
(ep,q(t) + 1) = 2tep,q(tx)COSp,q(ty). (2.6)

From Equation (2.6), we transform the left-hand side into the following:
∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!
(ep,q(t) + 1)

=

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!

( ∞∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CGk,p,q(x, y) + CGn,p,q(x, y)

)
tn

[n]p,q!
,

(2.7)

and we write the right-hand side of Equation (2.6) as follows:

2tep,q(tx)COSp,q(ty) = 2

∞∑
n=0

Cn,p,q(x, y)
tn+1

[n]p,q!

= 2

∞∑
n=0

[n]p,qCn−1,p,q(x, y)
tn

[n]p,q!
.

(2.8)

By comparing Equations (2.7) and (2.8), we can derive the required result. �
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In order to find some relations between the (p, q)-cosine Genocchi polynomials
and (p, q)-other polynomials, we note the following equations:

[n]p,qCn−1,p,q(x, y) =

n−1∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y), (2.9)

where CBn,p,q(x, y) is the (p, q)-cosine Bernoulli polynomials, and

2Cn,p,q(x, y) =

n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CEk,p,q(x, y) + CEn,p,q(x, y), (2.10)

where CEn,p,q(x, y) is the (p, q)-cosine Euler polynomials, see [14].
Corollary 2.6. From Equations (2.9), (2.10) and Theorem 2.5, the following
holds:

(i)
n−1∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y) =

1

2

(
n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CGk,p,q(x, y) + CGn,p,q(x, y)

)
,

(ii) CEn−1,p,q(x, y) =

n−1∑
k=0

[
n− 1
k

]
p,q

(
p(

n−k
2 )

CGk,p,q(x, y)

[n− k]p,q
− p(

n−k−1
2 )

CEk,p,q(x, y)

)
.

Theorem 2.7. For |q/p|<1, we get

CGn,p,q(1, y) =

n∑
k=0

[
n
k

]
p,q

(−1)
k
q(

k
2) (2[n− k]p,qCn−k−1,p,q(x, y) + CGn−k,p,q(x, y))x

k.

Proof. If we put 1 instead of x in Definition 2.1, we find the following:
∞∑
n=0

CGn,p,q(1, y)
tn

[n]p,q!

=
2t

ep,q(t) + 1
(ep,q(t) + 1)COSp,q(ty)−

2t

ep,q(t) + 1
COSp,q(ty)

= 2tCOSp,q(ty)−
2t

ep,q(t) + 1
COSp,q(ty)

=

( ∞∑
n=0

2Cn,p,q(x, y)
tn+1

[n]p,q!
+

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!

) ∞∑
n=0

q(
n
2)(−x)n tn

[n]p,q!

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

(−1)
k
q(

k
2) (2[n− k]p,qCn−k−1,p,q(x, y) + CGn−k,p,q(x, y))x

k

)
tn

[n]p,q!
.

Comparing the coefficients of both sides in the above equation, we can derive
the desired result. �
Corollary 2.8. Setting p = 1 in Theorem 2.7, one holds

CGn,q(1, y) =

n∑
k=0

[
n
k

]
q

(−1)kq(
k
2) (2[n− k]qCn−k−1,q(x, y) + CGn−k,q(x, y))x

k.



Some properties and identities for (p, q)-Genocchi polynomials 239

Theorem 2.9. For nonzero integers a and b, we find
n∑
k=0

[
n
k

]
p,q

an−kbkCGn−k,p,q(bx, by)CGk,p,q(aX, aY )

=

n∑
k=0

[
n
k

]
p,q

bn−kakCGn−k,p,q(ax, ay)CGk,p,q(bX, bY ).

Proof. Assume form A as follows:

A :=
4t2ep,q(abtx)ep,q(abtX)COSp,q(abty)COSp,q(abtY )

(ep,q(at) + 1)(ep,q(bt) + 1)
.

From form A, we get

A =
2t

ep,q(at) + 1
ep,q(abtx)COSp,q(abty)

2t

ep,q(bt) + 1
ep,q(abtx)COSp,q(abtY )

=

∞∑
n=0

CGn,p,q(bx, by)
(at)n

[n]p,q!

∞∑
n=0

CGn,p,q(aX, aY )
(bt)n

[n]p,q!

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

an−kbkCGn−k,p,q(bx, by)CGk,p,q(aX, aY )

)
tn

[n]p,q!
,

(2.11)
and form A also can be transformed into the following:

A =

∞∑
n=0

CGn,p,q(ax, ay)
(bt)n

[n]p,q!

∞∑
n=0

CGn,p,q(bX, bY )
(at)n

[n]p,q!

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

bn−kakCGn−k,p,q(ax, ay)CGk,p,q(bX, bY )

)
tn

[n]p,q!
.

(2.12)

From Equation (2.11) and (2.12), we know (p, q)-cosine Genocchi polynomials
have symmetric property and find the required result. �

Corollary 2.10. Setting b = 1 in Theorem 2.9, one holds
n∑
k=0

[
n
k

]
p,q

an−kCGn−k,p,q(x, y)CGk,p,q(aX, aY )

=

n∑
k=0

[
n
k

]
p,q

akCGn−k,p,q(ax, ay)CGk,p,q(X,Y ).

Corollary 2.11. Setting p = 1 in Theorem 2.9, the following holds
n∑
k=0

[
n
k

]
q

an−kbkCGn−k,q(bx, by)CGk,q(aX, aY )

=

n∑
k=0

[
n
k

]
q

bn−kakCGn−k,q(ax, ay)CGk,q(bX, bY ).
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Theorem 2.12. For 0 < q
p < 1, we have

Dp,q,xCGn,p,q(x, y) =
CGn,p,q(px, y)− CGn,p,q(qx, y)

(p− q)x
.

Proof. Applying (p, q)-derivative in the generating function of (p, q)-cosine
Genocchi polynomials, we have

Dp,q,x

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!

= Dp,q,x

(
2

ep,q(t) + 1
ep,q(tx)COSp,q(ty)

)
=

1

(p− q)x

(
2t

ep,q(t) + 1
ep,q(tpx)COSp,q(ty)−

2t

ep,q(t) + 1
ep,q(tqx)COSp,q(ty)

)
=

1

(p− q)x

∞∑
n=0

(CGn,p,q(px, y)− CGn,p,q(qx, y))
tn

[n]p,q!
.

From the above equation, we can finish the proof of Theorem 2.12. �

Corollary 2.13. Let p = 1 in Theorem 2.12. Then, the following equation holds

Dq,xCGn,q(x, y) =
CGn,q(x, y)− CGn,q(qx, y)

(1− q)x
.

Theorem 2.14. Let x, y ∈ R. Then we have

CGn,p,q(x, y) + 2CBn,p,q(x, y)

=

n∑
k=0

[
n
k

]
p,q

p(
k
2) (2CBn−k,p,q(x, y)− CGn−k,p,q(x, y)) ,

where CBn,p,q(x, y) is the (p,q)-cosine Bernoulli polynomials, see [13].

Proof. Transforming the generating function of (p, q)-cosine Genocchi poly-
nomials and using (p, q)-cosine Bernoulli polynomials, we investigate

2t =

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!

( ∞∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

p(
k
2)CGn−k,p,q(x, y) + CGn,p,q(x, y)

)
tn

[n]p,q!

= 2

∞∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!

( ∞∑
n=0

p(
n
2)

tn

[n]p,q!
− 1

)

= 2

∞∑
n=0

(
n∑
k=0

[
n
k

]
p,q

p(
k
2)CBn−k,p,q(x, y)− CBn,p,q(x, y)

)
tn

[n]p,q!
.
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From the above equation, we can find the required result which is a relation
between (p, q)-cosine Genocchi polynomials and (p, q)-cosine Bernoulli polyno-
mials. �
Corollary 2.15. From Theorem 2.14, one holds

CGn,q(x, y) + 2CBn,q(x, y) =

n∑
k=0

[
n
k

]
q

(2CBn−k,q(x, y)− CGn−k,q(x, y)) ,

where CBn,q(x, y) is the q-cosine Bernoulli polynomials, see [10].

Theorem 2.16. Let x, y ∈ R. Then we get
CGn,p,q(x, y) = [n]p,qCEn−1,p,q(x, y),

where CEn,p,q(x, y) is the (p,q)-cosine Euler polynomials, see [14].

Proof. From Definition 2.1, we have a relation of (p, q)-cosine Genocchi poly-
nomials and (p, q)-cosine Euler polynomials such as

∞∑
n=0

CGn,p,q(x, y)
tn

[n]p,q!
=

∞∑
n=0

tCEn,p,q(x, y)
tn

[n]p,q!

=

∞∑
n=0

[n]p,qCEn−1,p,q(x, y)
tn

[n]p,q!
.

By comparing the coefficients of both sides in the above equation, we complete
the proof of Theorem 2.16. �
Corollary 2.17. Putting p = 1, the following holds

CGn,q(x, y) = [n]qCEn−1,q(x, y),

where CEn,q(x, y) is the q-cosine Euler polynomials, see [12].

Corollary 2.18. Putting p = 1 and q → 1, the following equation holds
CGn(x, y) = nCEn−1(x, y),

where CEn(x, y) is the cosine Euler polynomials, see [12].
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