On Generators in the Category of Actions of Pomonoids on Posets and its Slices

Farideh Farsad and Ali Madanshekaf*
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, P. O. Box 35131-19111, Semnan, Iran
e-mail : faridehfarsad@yahoo.com and amadanshekaf@semnan.ac.ir

Abstract. Where S is a pomonoid, let Pos- S be the category of S-posets and S-poset maps. We start off by characterizing the pomonoids S for which all projectives in this category are either generators or free. We then study the notions of regular injectivity and weakly regularly d-injectivity in this category. This leads to homological classification results for pomonoids. Among other things, we get find relationships between regular injectivity in the slice category Pos- S / B_{S}, for any S-poset B_{S}, and generators and cyclic projectives in $\mathbf{P o s - S}$.

1. Introduction and Preliminaries

General ordered algebraic structures play a key role in a wide range of areas, including analysis, logic, theoretical computer science, and physics [2]. One of these structures, which is of interest to mathematicians, is the category of representations of a pomonoid by order preserving maps of partially ordered sets (see for example $[3,4,5,6,7,8,9,14,16,18,19])$. Although there exist many papers which investigate various properties of generator acts over a fixed monoid (see $[10,11,12,17]$ for example), among them there seems to be very little known on generator S-posets, where S is a pomonoid. In [14], V. Laan investigated some properties of generator S-posets. Furthermore, in [9] some homoligical characterizations of pomonoids by properties of generators were presented. Continuing this study, in this paper, after some introductory results in Section 1, we attempt in Section 2 to collect new results on generators in Pos- S to apply to the question of the homological classification of pomonoids.
\mathcal{M}-injective objects in the slice category \mathcal{C} / B, for any B in \mathcal{C}, form the right part of a weak factorization system that has morphisms of \mathcal{M} as the left part (see [1]). Here, we consider the same case in the slice category Pos-S/ B_{S} of right S-poset

* Corresponding Author.

Received November 29, 2021; revised May 22, 2022; accepted October 10, 2022.
2020 Mathematics Subject Classification: 06F05, 18A25, 18G05, 20M30, 20M50..
Key words and phrases: S-poset, generator, projective, slice category, regular injective.
maps over B_{S}, where B_{S} is an arbitrary S-poset. In Section 3, we first find conditions for when all generators are regular d-injective or weakly regularly injective. Then, we prove that every \mathcal{M}-injective object in Pos- S / B_{S} is a split epimorphism, where $\mathcal{M}=\mathrm{Emb}$ is the class of all order-embeddings of S-posets. Also, we investigate the relationship between regular injectivity in Pos- S and Pos-S/ B_{S} and generators and cyclic projectives which becomes evident when passing to acts over their endomorphism monoids.

For the rest of this section, we give some preliminaries about S-acts, S-posets and slice category which we will need in the sequel. The reader is referred to [13] and [3], respectively, for information on general properties of S-acts and S-posets that are not fully explained here.

Let S be a monoid with identity 1. Recall that a (right) S-act is a set A equipped with a map $\mu: A \times S \rightarrow A$ called its action, such that, denoting $\mu(a, s)$ by $a s$, we have $a 1=a$ and $a(s t)=(a s) t$, for all $a \in A$, and $s, t \in S$. The category of all S-acts, with action-preserving (S-act) maps $(f: A \rightarrow B$ with $f(a s)=f(a) s$, for $s \in S, a \in A$), is denoted by Act- S. For instance, take any monoid S and a non-empty set A. Then A becomes a right S-act by defining as $=a$ for all $a \in A$, $s \in S$; we call that A an S-act with trivial action. Clearly S itself is an S-act with its operation as the action.

On a monoid S we define the following relations: for every $s, t \in S$

1. $s \mathcal{R} t$ iff $s S=t S$.
2. $s \mathcal{J} t$ iff $S s S=S t S$.
3. $s \mathcal{D} t$ iff there exists $u \in S$ with $s S=u S$ and $S t=S u$.

These relations are called Green's relations on S (see [13]). Here, we consider these notions for a pomonoid S and supply some suitable results. A monoid S is said to be a partially ordered monoid (briefly a pomonoid) if it is also a poset whose partial order \leq is compatible with the binary operation, i.e., $s \leq t, s^{\prime} \leq t^{\prime}$ imply $s s^{\prime} \leq t t^{\prime}$ (see [2]). In this paper S denotes a pomonoid with an arbitrary order, unless otherwise stated.

Let S be a pomonoid and A be a poset. Then $A \times S$ becomes a poset with componentwise order. A poset A is said to be a (right) S-poset over a pomonoid S if it is an S-act and the action is monotone $\left(\left(a_{1}, s_{1}\right) \leq\left(a_{2}, s_{2}\right)\right.$ implies, $a_{1} s_{1} \leq a_{2} s_{2}$, where $a_{1}, a_{2} \in A$ and $\left.s_{1}, s_{2} \in S\right)$. We denote it by A_{S}. The category of all S posets with action preserving monotone maps is denoted by Pos- S. Clearly S itself is an S-poset with its operation as the action. A left S-poset A can be defined analogously (see [3]) and denoted by ${ }_{S} A$. Also, we denote the category of all left S posets with action preserving monotone maps by S-Pos. As in the unordered case, the coproduct in Pos- S is simply the disjoint union, with S-action and order given componentwise, and as usual the coproduct of a family $\left\{A_{i} \mid i \in I\right\}$ will be denoted by $\coprod_{i \in I} A_{i}$. Let T and S be pomonoids. Then a poset A is called a T-S-biposet if it is a left T-poset and a right S-poset and ($t a) s=t(s a)$ for every $s \in S, t \in T$ and $a \in A$. We denote it by ${ }_{T} A_{S}$.

We recall the following results from [14]:
(i) For every A_{S} in $\operatorname{Pos}-S$, consider the set $\operatorname{End}\left(A_{S}\right)=\operatorname{Pos}_{S}(A, A)$ as a pomonoid with respect to composition and pointwise order. We define the left $\operatorname{End}\left(A_{S}\right)$-action on A by $f \cdot a=f(a)$, for every $f \in \operatorname{End}\left(A_{S}\right), a \in A$. Note that this action is monotone because if $f, g \in \operatorname{End}\left(A_{S}\right)$ and $a, b \in A$ are such that $f \leq g$ and $a \leq b$ then we have $f \cdot a=f(a) \leq f(b) \leq g(b)=g \cdot b$. Thus one has $\operatorname{End}\left(A_{S}\right) A_{S}$.
(ii) The following two mappings are pomonoid homomorphisms:

$$
\begin{align*}
& \rho: S \rightarrow \operatorname{End}\left(A_{S}\right) ; \quad s \mapsto \rho_{s} \\
& \lambda: T \rightarrow \operatorname{End}\left({ }_{T} A\right) ; \quad t \mapsto \lambda_{t} . \tag{1.1}
\end{align*}
$$

Here, $\rho_{s}: A_{S} \rightarrow A_{S}, a \mapsto$ as and $\lambda_{t}:{ }_{T} A \rightarrow{ }_{T} A, a \mapsto t a$ are morphisms in Pos- S and T-Pos, respectively.
(iii) For every T - S-biposet ${ }_{T} A_{S}$ recall that if $B \in \operatorname{Pos}-S$ then the set $\operatorname{Pos}_{S}(B, A)$ of all S-poset maps from B_{S} to A_{S} is an object in T-Pos with the action defined by $t \cdot f=\lambda_{t} f$ for every $t \in T, f \in \operatorname{Pos}_{S}(B, A)$. Consequently, we have a functor

$$
\operatorname{Pos}_{S}(-, A): \text { Pos- } S \rightarrow T \text {-Pos }
$$

by taking

$$
\operatorname{Pos}_{S}(-, A)(B)=\operatorname{Pos}_{S}(B, A)
$$

for every $B \in \operatorname{Pos}-S$.
An S-poset G_{S} is a generator in the category Pos- S if for any distinct S-poset maps $\alpha, \beta: X_{S} \rightarrow Y_{S}$ there exists an S-poset map $f: G_{S} \rightarrow X_{S}$ such that $\alpha f \neq \beta f$.

For any category \mathcal{C} and an object B of \mathcal{C}, there is a slice category (also called comma category) \mathcal{C} / B. The objects of \mathcal{C} / B are morphisms of \mathcal{C} with codomain B, and morphisms in \mathcal{C} / B from one such object $f: F \rightarrow B$ to another $g: E \rightarrow B$ are commutative triangles in C :

i.e, $g h=f$. We write $h: f \rightarrow g$. The composition in \mathcal{C} / B is defined from the composition in \mathcal{C}, in the obvious way- the triangles are pasted together (for more details see [15]).

A poset is said to be complete if each of its subsets has an infimum and a supremum, in particular, a complete poset is bounded, that is, it has a least (bottom) element \perp and a greatest (top) element T.

2. Some Homological Classifications for Pomonoids by Generators in Pos-S

In this section, we discuss the properties of generators and projective generators in Pos- S. Recall that a projective S-poset A_{S} which is also a generator is called a projective generator S-poset. A cyclic S-poset is an S-poset A for which there exists an element $a \in A$ such that $A=a S$. By a cyclic projective S-poset we mean a cyclic S-poset which is also projective.

As we mentioned in the introduction, generators for the category Pos- S were characterized in [14] with the following two propositions.
Proposition 2.1. Cyclic projectives in Pos-S are precisely retracts of S_{S}.
Proposition 2.2. An S-poset A_{S} is a cyclic projective generator in $\operatorname{Pos}-S$ if and only if $A_{S} \cong e S_{S}$ for an idempotent $e \in S$ with e d1.

The following is immediate from Proposition 2.2:
Proposition 2.3. Let S be a commutative pomonoid. Then all cyclic projective generators in Pos-S are isomorphic to S_{S}.

We will also need the following characterization of cyclic projective S-posets from [19, Proposition 4.2].
Proposition 2.4. Let A_{S} be an S-poset and $a \in A$. Then the following statements are equivalent:
(i) $a S_{S}$ is projective.
(ii) $a S_{S} \cong e S_{S}$ for some idempotent $e \in S$.

We state the following two facts about projectives and generators from [19] and [14] respectively. They will be used throughout the paper.
Theorem 2.5. An S-poset P_{S} is projective if and only if $P_{S} \cong \coprod_{i \in I} e_{i} S$ where $e_{i}^{2}=e_{i} \in S, i \in I$.

Theorem 2.6. The following assertions are equivalent for a right S-poset A_{S}.

1. For all $X_{S}, Y_{S} \in \operatorname{Pos}-S$ and $f, g \in \operatorname{Pos}_{S}(X, Y), f \leq g$ whenever $f k \leq g k$ for all $k \in \operatorname{Pos}_{S}(A ; X)$.
2. A_{S} is a generator.
3. For every $X_{S} \in \mathbf{P o s - S}$ there exists a set I and an epimorphism $h: \coprod_{I} A \rightarrow X$ in Pos-S.
4. There exists an epimorphism $\pi: A \rightarrow S$ in Pos-S.
5. S_{S} is a retract of A_{S}.

Now we can prove the following result.
Theorem 2.7. Every S-poset P_{S} is projective generator if and only if $P_{S}=\coprod_{i \in I} P_{i}$ where $P_{i} \cong e_{i} S$ for every $i \in I$, and at least one $P_{j}, j \in I$ is a generator with $e_{j} \mathcal{J}$.

Proof. On the one hand, let the S-poset P_{S} be a projective generator. By Theorem 2.5 we have $P_{S} \cong \coprod_{i \in I} e_{i} S$ where $e_{i}^{2}=e_{i} \in S, i \in I$. And by Theorem 2.6 there exists a surjective S-poset epimorphism $\pi: P_{S} \longrightarrow S_{S}$, so $1=\pi(a)$ for some $a \in$ $e_{j} S, j \in I$. Now $\left.\pi\right|_{e_{j} S}: e_{j} S \longrightarrow S_{S}$ is also an epimorphism in Pos-S, because for any $s \in S$ we have $s=1 s=\pi(a) s=\pi(a s)$ and $a s \in e_{j} S$. Hence, $e_{j} S$ is a generator and by Proposition 2.2, $e_{j} \mathcal{J} 1$.
On the other hand, assume that P_{S} has the factorisation in the statement of the theorem. By Theorem 2.5, P_{S} is projective. That P_{j} is generator, implies that there exists an S-poset epimorphism $\pi_{j}: P_{j} \longrightarrow S_{S}$. Now, for the following diagram

take $q_{j}=\pi_{j}$ and q_{i} the composite S-poset map $P_{i} \cong e_{i} S \hookrightarrow S$ for every $i \in I, i \neq j$. By the property of the coproduct S-poset $P_{S}=\coprod_{i \in I} P_{i}$, corresponding to the S poset epimorphisms $\left\{q_{i} \mid i \in I\right\}$, there exists a unique S-poset map $\pi: P \longrightarrow S_{S}$ such that $\left.\pi\right|_{P_{i}}=q_{i}$ for all $i \in I$. In particular, $\left.\pi\right|_{P_{j}}=\pi_{j}$ and π_{j} is an S-poset epimorphism, so π is also an S-poset epimorphism. Hence, P_{S} is generator.

Notice that for every pomonoid S and idempotent $e \in S$, the sub S-poset $e S_{S}$ of S_{S} is projective according to Proposition 2.4, but it is not a generator because eJ1 does not necessarily hold. For example, if we take a periodic monoid S endowed it with discrete order then we have a pomonoid. Now if we take an idempotent $1 \neq e \in S$, then $e \mathcal{J} 1$ does not hold (see [13, Proposition I.3.26 on page 32] for more details).

Next, we have the following result.
Theorem 2.8. For any pomonoid S the following statements are equivalent:
(i) All projective right S-posets are generators in Pos-S.
(ii) All cyclic projective right S-posets are generators in Pos-S.
(iii) eJ1 for every idempotent $e \in S$.

Proof. That (i) implies (ii) is clear. To see that (ii) implies (iii) observe that for any idempotent $e \in S$, the right S-poset $e S_{S}$ is cyclic, hence it is a genreator by assumption. The result thus follows by Proposition 2.2. .

For the implication (iii) $\Rightarrow(\mathrm{i})$, let P_{S} be an S-poset. By Theorem 2.5 we have $P_{S} \cong \coprod_{i \in I} e_{i} S$ where $e_{i}^{2}=e_{i} \in S, i \in I$. By the assumption we have $e_{i} \mathcal{J} 1$ for every $i \in I$ and so P_{S} is a generator by Theorem 2.7.

Recall [4] that a right poideal of a pomonoid S is a (possibly empty) subset I of S if it is both a monoid right ideal $(I S \subseteq I)$ and a down set ($a \leq b, b \in I$ imply that $a \in I$). It is principal if it is generated (as a monoid right ideal of S) by a single element. For example

$$
\downarrow r S=\{t \in S: \exists s \in S, t \leq r s\}
$$

is a principal poideal of S, for every $r \in S$.
In the following we shall characterize pomonoids for which all principal right poideals are generators.

Proposition 2.9. Let S be a pomonoid and $e \in S$ satisfy $e^{2}=e$. If the cyclic projective sub S-poset $e S_{S}$ of S_{S} is a generator in Pos-S, then $\downarrow e S$ is also a generator.
Proof. By assumption there exists an S-poset epimorphism $f: e S_{S} \rightarrow S_{S}$. Define the mapping $g: \downarrow e S \rightarrow S_{S}$ by $g(x):=f(e x)$ for every $x \in \downarrow e S$. It is easy to see that g is an S-poset map. Also, for every $s \in S$ there exists $u \in S$ such that $f(e u)=s$. Then we have

$$
g(e u)=f(e e u)=f(e u)=s
$$

This means that g is an epimorphism. By Theorem 2.6 we conclude that $\downarrow e S$ is a generator, as required.

Lemma 2.10. Let S be a pomonoid and $z \in S$. If the principal right poideal $\downarrow z S$ is a generator in Pos-S, then there exist $x, y \in S$ such that $1 \leq y x$, and $z a \leq z b$, $a, b \in S$ implies ya $\leq y b$.
Proof. Since $\downarrow z S$ is a generator in Pos-S , by Theorem 2.6, there exists an epimorphism $g: \downarrow z S \rightarrow S_{S}$. Hence, there are elements $u \in \downarrow z S$ and $t \in S$ such that $u \leq z t$ and $g(u)=1$. Let $y=g(z)$ and $x=t$. Then $y x=g(z) x=g(z x)$. Since $u \leq z x$, the monotonicity of g implies that $g(u) \leq g(z x)$. Consequently, $1=g(u) \leq g(z x)=y x$. Now, suppose $z a \leq z b, a, b \in S$. Then $y a=g(z) a=g(z a) \leq g(z b)=g(z) b=y b$.

Next we answer the question about the conditions under which the assumptions of Proposition 2.9 are satisfied.

Proposition 2.11. Let S be a pomonoid in which the identity element is the top element. If all poideals of S are generators in Pos-S, then the sub S-poset $e S_{S}$ of S_{S} is a generator in Pos-S, for every idempotent $e \in S$.
Proof. Assume that all poideals of S are generators in Pos-S. Then for every idempotent $e \in S, \downarrow e S$ is a generator in Pos- S. By Lemma 2.10, there exist $x, y \in S$ such that $1 \leq y x$, and $e a \leq e b, a, b \in S$, always implies $y a \leq y b$. In particular, since $e 1 \leq e e$ we have $y \leq y e$, so $1 \leq y x \leq y e x$. As we have $y e x \leq 1$ by the hypothesis, we get yex $=1$, which means that $e \mathcal{J} 1$. So $e S_{S}$ is a projective generator by Proposition 2.2, as needed.

Theorem 2.12. Let S be a pomonoid in which the identity element is the top element. The following statements are equivalent:
(i) All projective right S-posets are generators in Pos-S.
(ii) All cyclic projective right S-posets are generators in Pos-S.
(iii) e $\mathcal{J} 1$ for every idempotent $e \in S$.
(iv) All principal right poideals of S which are generated by an idempotent, are generators in Pos-S.
Proof. The equivalence of the first three statements is Theorem 2.8.
That (iii) implies (iv) is easy. Indeed, by Proposition 2.2 we get that $e S_{S}$ is a cyclic projective generator, and Proposition 2.9 shows that $\downarrow e S$ is a generator in Pos-S.

To finish off, we show that (iv) implies (iii). Consider the principal right poideal $\downarrow e S$ for every idempotent $e \in S$ which is a generator in Pos- S. By a proof similar to that of Proposition 2.11, the cyclic projective sub S-poset $e S_{S}$ of S_{S} is a generator. Using Proposition 2.2, we conclude that eJ1.

By a free S-poset on a poset P we mean an S-poset F together with a poset $\operatorname{map} \tau: P \rightarrow F$ with the universal property that given any S-poset A and any poset map $f: P \rightarrow A$ there exists a unique S-poset map $\bar{f}: F \rightarrow A$ such that $\bar{f} \circ \tau=f$, i.e, the diagram

commutes. The S-poset F (up to isomorphism) is given by $F=P \times S$ with componentwise order and the action $(x, s) t=(x, s t)$, for $x \in P$ and $s, t \in S$ (see [3] for example). Furthermore, by a free S-poset we mean an S-poset which is free on some poset.

Example 2.13. Let S be a pomonoid generated by the elements e, k, k^{\prime} and with discrete order such that $k k^{\prime}=1, e^{2}=e$ and $e k=k^{\prime}$. Then $e S_{S}$ is a cyclic projective generator in Pos- S. But $e S_{S}$ is not free (see Lemma 2.14 below).

Now, we present some condition under which the sub S-posets $e S_{S}$ of S_{S} are free for idempotent elements $e \in S$. The proof of the following result is similar to the proof for the unordered case in [13, Proposition 3.17.17], so we omit it. Moreover, we conclude when projectivity (or cyclic projectivity) implies freeness in Pos-S.

Lemma 2.14. Let e be an idempotent of a pomonoid S. Then the sub S-poset $e S_{S}$ of S_{S} is a free right S-poset if and only if $e \mathcal{D} 1$.

This allows us to prove the following.
Theorem 2.15. For any pomonoid S the following statements are equivalent: (i) All projective right S-posets are free.
(ii) All projective generators in $\operatorname{Pos}-S$ are free.
(iii) All cyclic projective right S-posets are free.
(iv) $e \mathcal{D} 1$ for every idempotent $e \in S$.

Proof. The implication (i) \Rightarrow (ii) is trivial.
To see (ii) \Rightarrow (iii), observe that by Proposition 2.4, all cyclic projective S posets are isomorphic to $e S_{S}$ for some idempotent $e \in S$. Let $A=S_{S} \coprod e S_{S}$. By Proposition 2.7, A_{S} is a projective generator in Pos-S. By hypothesis A_{S} is free which implies that $e S_{S}$ is free.

Now we show that (iii) \Rightarrow (i). By decomposition theorem in [19], every projective S-poset is isomorphic to a coproduct of cyclic projective S-posets which are free by assumption. Now since the coproducts of free S-posets being free we get the result.

By the characterization of cyclic projective S-posets in Proposition 2.4 and Lemma 2.14 we get the equivalence of (iii) and (iv), which completes the proof.

3. Regular Injectivity in Pos- S and Pos- S / B_{S} and Generators

Let \mathcal{C} be a category and \mathcal{M} a class of its morphisms. An object I of \mathcal{C} is called \mathcal{M}-injective if for each \mathcal{M}-morphism $h: U \rightarrow V$ and morphism $u: U \rightarrow I$ there exists a morphism $s: V \rightarrow I$ such that $s h=u$. That is, the following diagram is commutative:

In particular, this means that, in the slice category \mathcal{C} / B, an object $f: X \rightarrow B$ is \mathcal{M}-injective if, for any commutative diagram in \mathcal{C}

with $h \in \mathcal{M}$, there exists an arrow $s: V \rightarrow X$ such that $s h=u$ and $f s=v$.

Recall that regular monomorphisms (morphisms which are equalizers) in Pos- S (and also in Pos- S / B_{S}) are exactly order-embeddings (see [3] and [6]). By Embinjectivity in Pos-S we mean \mathcal{M}-injectivity in Pos- S, where $\mathcal{M}=$ Emb is the class
of all order-embeddings of S-posets. In the following we shall deal with Embinjectivity in Pos- S and Pos- S / B_{S}, where Emb is the class of all order-embeddings of S-posets.
Theorem 3.1. All generators in Pos-S are Emb-injective if and only if all S-posets are Emb-injective.
Proof. Clearly it is enough to show the forward implication. Let A_{S} be an S-poset. Consider the product S-poset $A_{S} \times S_{S}$ which is a generator in Pos- S by Theorem 2.6 and so is Emb-injective. By a general category-theoretic result which states that a product of a family of injective objects in a category is injective if and only if each component of the product is injective, we get that A_{S} is Emb-injective in Pos- S.

Note that the class of all embeddings of right poideals into S_{S} is a subclass of all down-closed embeddings in Pos- S, i.e. all embeddings $g: B_{S} \rightarrow C_{S}$ with the property that $g(B)$ is down-closed in C, and hence is a subclass of all embeddings.

Definition 3.2. An S-poset A_{S} is called (principally) weakly regularly d-injective if it is injective with respect to all embeddings of (principal) right poideals into S_{S}.

Proposition 3.3. If all generators in $\operatorname{Pos-S}$ are weakly regularly d-injective then all S-posets are weakly regularly d-injective.
Proof. Let A_{S} be an S-poset. Since $A_{S} \times S_{S}$ is a generator in $\operatorname{Pos}-S$ it is a weakly regularly d-injective. To show that A_{S} is weakly regularly d-injective consider the following diagram

where I is a poideal of S. Define S-poset map $\bar{u}: I_{S} \rightarrow A_{S} \times S_{S}$ by $\bar{u}(s)=(u(s), s)$ for each $s \in I_{S}$. By the assumption, there exists an S-poset map $v: S_{S} \rightarrow A_{S} \times S_{S}$ such that $v i=\bar{u}$.

Now by composition v with the projection $\pi_{A}: A_{S} \times S_{S} \rightarrow A_{S}$, we get A_{S} is a weakly regularly d-injective.

For a pomonoid S recall that an element $s \in S$ is called regular if there exists $t \in S$ such that sts $=s$. One calls S a regular pomonoid if all its elements are regular.

Theorem 3.4. Let S be a pomonoid whose identity element is the top element. Then the following statements are equivalent:
(i) All S-posets are principally weakly regularly d-injective.
(ii) All principal right poideals of S are principally weakly regularly d-injective.
(iii) All generators in Pos-S are principally weakly regularly d-injective.
(iv) S is a regular pomonoid.

Proof. The equivalence of (i) and (iii) comes from (the proof of) Proposition 3.3. The implication (iv) \Rightarrow (i) is in [18, Theorem 3.6] and the implication (i) \Rightarrow (ii) is trivial, so it is enough for us to show the implication (ii) \Rightarrow (iv).

So assume (ii). For every $s \in S$, consider the down-closed embedding $i: \downarrow s S \rightarrow$ $S_{S}, x \mapsto x$. It has a left inverse f, as $\downarrow s S$ is principally weakly regularly d-injective. Taking $f(1)=z$, we have $z \leq s t$ for some $t \in S$ and

$$
s=f(s)=f(1) s=z s \leq s t s
$$

On the other hand, sts $\leq s$, as 1 is the top element of S. Therefore $s t s=s$, showing that s is a regular element. As this was for any s, S is a regular pomonoid.

Recall from [4] that a pomonoid S which has no proper non-empty left (right) poideal is said to be left (right) simple.

Corollary 3.5. If all generators in Pos-S are Emb-injective then S is left simple.
Proof. From the hypothesis and Theorem 3.1, we conclude that all complete S posets are Emb-injective. It follows then from [4, Theorem 3.9] that S is left simple.

Proposition 3.6. For any pomonoid S the following statements are equivalent:
(i) All generators in Pos-S are complete S-posets.
(ii) All S-posets are complete.

Proof. First assume (i). Let A_{S} be an S-poset. Consider the generator $A_{S} \times S_{S}$, which is a complete S-poset by assumption. Since the order on the product $A_{S} \times S_{S}$ is the componentwise order, joins are computed componentwise in the product as well. That is, for a subset $T \subseteq A_{S} \times B_{S}$ we have $\bigvee T=\left(\bigvee \pi_{A}(T), \bigvee \pi_{B}(T)\right)$ where π_{A} and π_{B} are canonical projections on A_{S} and B_{S}, respectively. Therefore, for any subset $B \subseteq A, \bigvee B$ exists and so A_{S} is complete, giving (ii).

The converse implication is trivial.
We state the following result from [7, Proposition 3.17] that will be used later on. We give a direct proof of it here, for the convenience of the reader .

Proposition 3.7. Let S be a pomonoid and $B_{S} \in \operatorname{Pos}-S$. Suppose $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/BS . Then f is a split epimorphism in Pos-S.
Proof. By the universal property of the coproduct S-poset $A \dot{\cup} B$ (the disjoint union of A and B) there exists a unique S-poset map $\bar{f}: A \dot{\cup} B \rightarrow B$ such that the following
diagram commutes where i_{A} and i_{B} are injection S-poset maps.

In fact,

$$
\bar{f}(x)= \begin{cases}f(x) & \text { if } x \in A \\ x & \text { if } x \in B\end{cases}
$$

Now, let us consider the following commutative square

Since f is an Emb-injective object in Pos-S/ B_{S}, there exists a unique S-poset map $h: A \dot{\cup} B \rightarrow A$ such that $f h=\bar{f}$ and $h i_{A}=\operatorname{id}_{A}$. So $f h i_{B}=\bar{f} i_{B}=\mathrm{id}_{B}$, which shows that f is a split epimorphism in Pos- S.

Remark 3.8. There exist split epimorphisms in Pos- S which are not Emb-injective in Pos- S / B_{S}. To present an example, take an arbitrary pomonoid S and let X and B be, respectively, the first and second lattices shown in the following diagram:

Evidently, X is an S-poset with the action defined by $\top s=\top$ and $a s=b s=\perp s=a$ for all $s \in S$, also we consider B with the trivial action as an S-poset. Define the S-poset map $f: X_{S} \rightarrow B_{S}$, by $f(a)=f(b)=f(\perp)=0$ and $f(\top)=1$. Then f is a convex map. We show that it is not a regular injective object in Pos- S / B_{S}. Since $f^{-1}(0)=\{\perp, a, b\}$ is not a complete lattice, the authors in [6] showed that it is not Emb-injective in Pos-S/ B_{S}.

On the other hands, define the S-poset map $g: B_{S} \rightarrow X_{S}$ by $g(0)=\perp, g(1)=$ \top. Then we have $f g=\operatorname{id}_{B}$, so f is a split epimorphism. Therefore, the converse of the above proposition is not true generally.

Next recall that for a given poset P and a pomonoid S, the cofree S-poset on P is the set $P^{(S)}$ of all monotone maps from S to P, with pointwise order and action given by $(f s)(t)=f(s t)$ for $s, t \in S$ and $f \in P^{(S)}$ (see also [3, Theorem 13]).
Corollary 3.9. Suppose $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/B B_{S}. If A is a complete lattice which is also a retract of the cofree S-poset $A^{(S)}$, then A_{S} and B_{S} are Emb-injective object in Pos-S.
Proof. By hypothesis we conclude that $A^{(S)}$ is an Emb-injective S-poset (see [4, Theorem 3.3]). Also it is straightforward to see that a retract of a Emb-injective S-poset is Emb-injective and so we get A_{S} is an Emb-injective S-poset. Also, by Proposition 3.7 the S-poset map f is a split epimorphism. Consequently B_{S} being a retract of an Emb-injective S-poset is an Emb-injective S-poset.

At the rest of this section, we investigate some connections between Embinjectivity in Pos- S / B_{S} and generators and cyclic projectives in Pos- S.
Theorem 3.10. If $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/B B_{S} and B_{S} is a generator in Pos-S then A_{S} is a generator. Further, $\operatorname{End}\left(A_{S}\right) A$ is a cyclic projective in $\operatorname{End}\left(A_{S}\right)$-Pos.
Proof. Since $f: A_{S} \rightarrow B_{S}$ is Emb-injective object in Pos- S / B_{S}, by Proposition 3.7, there exists $g: B_{S} \rightarrow A_{S}$ in Pos- S such that $f g=\operatorname{id}_{B}$. As B_{S} is a generator in Pos- S and f is an epimorphism, A_{S} is also a generator (see [14]). Now, applying this fact and [14, Theorem 2.2], we get that $\operatorname{End}\left(A_{S}\right) A$ is a cyclic projective.
Theorem 3.11. Suppose $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/B B_{S} where A_{S} is a cyclic projective S-poset. Then B_{S} is a cyclic projective S-poset. Moreover, $\operatorname{End}\left(B_{S}\right) B$ is a generator in $\operatorname{End}\left(B_{S}\right)$-Pos.
Proof. Since $f: A_{S} \rightarrow B_{S}$ is Emb-injective object in Pos- S / B_{S}, by Proposition 3.7, there exists $g: B_{S} \rightarrow A_{S}$ in Pos- S such that $f g=\operatorname{id}_{B}$. Also, A_{S} is a cyclic projective in Pos- S hence by Proposition 2.1, there exist two S-poset maps $S_{S} \underset{\gamma}{\stackrel{\pi}{\rightleftarrows}} A_{S}$ such that $\pi \gamma=\mathrm{id}_{A}$. This yields $f \pi \gamma g=\mathrm{id}_{B}$ which shows that B_{S} is a retract of S_{S}. We get B_{S} is a cyclic projective S-poset by Proposition 2.1, so by [14, Proposition 3.1], we conclude that $\operatorname{End}\left(B_{S}\right) B$ is a generator in $\operatorname{End}\left(B_{S}\right)$-Pos.

Theorem 3.12. Suppose $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/B . Then all of the following hold.
(i) $\operatorname{Pos}_{S}\left(B_{S}, A_{S}\right)$ is a generator in $\operatorname{Pos}-\operatorname{End}\left(B_{S}\right)$.
(ii) $\operatorname{Pos}_{S}\left(A_{S}, B_{S}\right)$ is a generator in $\operatorname{End}\left(B_{S}\right)$-Pos.
(iii) $\operatorname{Pos}_{S}\left(B_{S}, A_{S}\right)$ is a cyclic projective in $\operatorname{End}\left(A_{S}\right)$-Pos.
(iv) $\operatorname{Pos}_{S}\left(A_{S}, B_{S}\right)$ is a cyclic projective in $\operatorname{Pos}-E n d\left(A_{S}\right)$.

Proof. Since $f: A_{S} \rightarrow B_{S}$ is Emb-injective object in Pos- S / B_{S}, in view of Proposition 3.7, there exists $g: B_{S} \rightarrow A_{S}$ such that $f g=\mathrm{id}_{B}$. Applying the functors $\operatorname{Pos}_{S}\left(B_{S},-\right)$ and $\boldsymbol{P o s}_{S}\left(-, B_{S}\right)$ to the identity map $\operatorname{id}_{B_{S}}$ we can easily get the assertions (i) and (ii), respectively. Again by applying the functors $\operatorname{Pos}_{S}\left(-, A_{S}\right)$ and
$\operatorname{Pos}_{S}\left(A_{S},-\right)$ to the above identity, in light of Proposition 2.1, we can deduce that the statements (iii) and (iv) are true.
Proposition 3.13. Let A_{S} be an S-poset. Then in any of the following cases $\operatorname{Pos}_{S}\left(A_{S} \times B_{S}, B_{S}\right)$ is a generator in $\operatorname{End}\left(B_{S}\right)$-Pos, for every $B_{S} \in$ Pos-S:
(i) A_{S} is an Emb-injective S-poset.
(ii) $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in Pos-S/ B_{S}.

Proof. (i) Consider the second projection S-poset map $\pi_{B}: A_{S} \times B_{S} \rightarrow B_{S}$. The authors in [6] have showed that it is an Emb-injective object in Pos- S / B_{S}. Consequently, by Theorem 3.12(ii), we get the result.
(ii) By Proposition 3.7, there exists an S-poset map $g: B_{S} \rightarrow A_{S}$ such that $f g=$ id_{B}. By the universal property of the product S-poset $A \times B$ there exists a unique S-poset map $\varphi_{B}: B_{S} \rightarrow A \times B$ (indeed $\left.b \mapsto(g(b), b)\right)$ such that the following diagram commutes:

i.e., $\pi_{B} \varphi_{B}=\operatorname{id}_{B}$ and $\pi_{A} \varphi_{B}=g$. Applying the functor $\operatorname{Pos}_{S}\left(-, B_{S}\right)$ to the first identity above we obtain

$$
\operatorname{End}\left(B_{S}\right)=\operatorname{Pos}_{S}(B, B) \underset{\bar{\varphi}_{B}}{\stackrel{\bar{\pi}_{B}}{\rightleftarrows}} \operatorname{Pos}_{S}(A \times B, B)
$$

such that $\bar{\varphi}_{B} \bar{\pi}_{B}=\operatorname{id}_{\operatorname{End}\left(B_{S}\right)}$. This means that $\operatorname{End}\left(B_{S}\right)$ is a retract of $\operatorname{Pos}_{S}(A \times$ $B, B)$ as we needed (see Theorem 2.6 again).

Proposition 3.13. Suppose that B_{S} is in $\operatorname{Pos}-S,_{T} A_{S}$ is a T-S-biposet, and $A \times B$ is a cyclic projective S-poset. If $f: A_{S} \rightarrow B_{S}$ is an Emb-injective object in PosS / B_{S} and $\lambda: T \rightarrow \operatorname{End}\left(A_{S}\right)$, defined as in (1.1), is an isomorphism then ${ }_{T} A$ is a generator in T-Pos.
Proof. Consider the second projection S-poset map $\pi_{A}: A \times B \rightarrow A_{S}$ and the unique S-poset map $\varphi_{A}: A_{S} \rightarrow A \times B$ for which $\pi_{A} \varphi_{A}=\operatorname{id}_{A}$. That is, let $\varphi_{A}(a)=(a, f(a))$. Since $A \times B$ is a cyclic projective S-poset by assumption, there exist S-poset maps $A \times B \underset{\pi}{\stackrel{\gamma}{\rightleftarrows}} S_{S}$ such that $\pi \gamma=\operatorname{id}_{A \times B}$. Applying the functor $\operatorname{Pos}_{S}\left(-, A_{S}\right)$ to the former identity and knowing that the composition $\pi_{A} \pi \gamma \varphi_{A}=$ id_{A}, we obtain

$$
T \cong \operatorname{Pos}_{S}(A, A) \stackrel{\bar{\pi}_{A}}{\stackrel{\bar{\varphi}_{A}}{\rightleftarrows}} \operatorname{Pos}_{S}(A \times B, A) \underset{\bar{\gamma}}{\stackrel{\bar{\pi}}{\rightleftarrows}} \operatorname{Pos}_{S}(S, A) \cong_{T} A
$$

in which $\bar{\varphi}_{A} \bar{\pi}_{A}=\operatorname{id}_{\operatorname{Pos}_{S}(A, A)}$ and $\bar{\gamma} \bar{\pi}=\operatorname{id}_{\operatorname{Pos}_{S}(S, A)}$. Thus, T is a retract of $T_{T} A$ and hence ${ }_{T} A$ is a generator in Pos- S.

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referee for a careful reading of the manuscript and for invaluable comments which improved the exposition of the article. Parts of this research were completed while the second author was on sabbatical leave at the Department of Mathematics, Vanderbilt University (VU), Nashvile, TN, USA. This author expresses his thanks for the warm hospitality and facilities provided by Prof. Constantine Tsinakis and the Department of Mathematics of VU. He is greatly indebted to Semnan University for its financial support during the sabbatical.

References

[1] A. Bailey and J. Renshaw, Weak factorization system for S-acts, Semigroup Forum, 87(3)(2013), 443-461.
[2] G. Birkhoff, Lattice Theory, Bull. Amer. Math. Soc., Providence(1973).
[3] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum, 71(3)(2005), 443-461.
[4] M. M. Ebrahimi, M. Mahmoudi and H. Rasouli, Banaschewski's theorem for S-posets: regular injectivity and completeness, Semigroup Forum, 80(2)(2010), 313-324.
[5] S. M. Fakhruddin, On the category of S-posets Acta Sci. Math. (Szeged), 52(1988), 85-92.
[6] F. Farsad and A. Madanshekaf, Regular injectivity and exponentiability in the slice categories of actions of pomonoids on posets, J. Korean Math. Soc., 52(1)(2015), 67-80.
[7] F. Farsad and A. Madanshekaf, Weak factorization systems and fibrewise regular injectivity for actions of po-monoids on posets, Algebra Discrete Math., 24(2)(2017), 235-249.
[8] S. Irannezhad and A. Madanshekaf, Projective S-posets and Hom functor, Algebra Colloq., 22(Spec 1)(2015), 975-984.
[9] S. Irannezhad and A. Madanshekaf, On classification of pomonoids by properties of generators, Asian-Eur. J. Math., 10(3)(2017), 16 pp.
[10] M. Jafari, A. Golchin and H. Mohammadzadeh Saany, On characterization of monoids by properties of generators II, Ital. J. Pure Appl. Math., 40(2018), 256-276.
[11] M. Jafari, A. Golchin and H. Mohammadzadeh Saany, On characterization of monoids by properties of generators, J. Math. Res. Appl., 40(4)(2020), 367-380.
[12] M. Kilp and U. Knauer, Characterization of monoids by properties of generators, Comm. Algebra, 20(7)(1992), 1841-1856.
[13] M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, Acts and Categories, de Gruyter, Berlin(2000).
[14] V. Laan, Generators in the category of S-posets, Cent. Eur. Math. 6(3)(2008), 357363.
[15] C. McLarty, Elementary Categories, Elementary Toposes, Oxford University Press, Oxford(1991).
[16] A. Madanshekaf and J. Tavakoli, Tiny objects in the category of M-Sets, Ital. J. Pure Appl. Math., 10(2001), 153-162.
[17] M. Sedaghatjoo, On monoids over which all generators satisfy a flatness property, Semigroup Forum, 87(3)(2013), 653-662.
[18] L. Shahbaz and M. Mahmoudi, Injectivity of S-posets with respect to down closed regular monomorphisms, Semigroup Forum, 91(3)(2015), 584-600.
[19] X. Shi, Z. Liu F. Wang and S. Bulman-Fleming, Indecomposable, projective and flat S-posets, Comm. Algebra, 33(1)(2005), 235-251.

