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Abstract. Where S is a pomonoid, let Pos-S be the category of S-posets and S-poset

maps. We start off by characterizing the pomonoids S for which all projectives in this

category are either generators or free. We then study the notions of regular injectivity

and weakly regularly d-injectivity in this category. This leads to homological classification

results for pomonoids. Among other things, we get find relationships between regular in-

jectivity in the slice category Pos-S/BS , for any S-poset BS, and generators and cyclic

projectives in Pos-S.

1. Introduction and Preliminaries

General ordered algebraic structures play a key role in a wide range of areas,
including analysis, logic, theoretical computer science, and physics [2]. One of
these structures, which is of interest to mathematicians, is the category of repre-
sentations of a pomonoid by order preserving maps of partially ordered sets (see
for example [3, 4, 5, 6, 7, 8, 9, 14, 16, 18, 19]). Although there exist many pa-
pers which investigate various properties of generator acts over a fixed monoid
(see [10, 11, 12, 17] for example), among them there seems to be very little known
on generator S-posets, where S is a pomonoid. In [14], V. Laan investigated some
properties of generator S-posets. Furthermore, in [9] some homoligical characteri-
zations of pomonoids by properties of generators were presented. Continuing this
study, in this paper, after some introductory results in Section 1, we attempt in
Section 2 to collect new results on generators in Pos-S to apply to the question of
the homological classification of pomonoids.

M-injective objects in the slice category C/B, for any B in C, form the right part
of a weak factorization system that has morphisms of M as the left part (see [1]).
Here, we consider the same case in the slice category Pos-S/BS of right S-poset
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maps over BS , where BS is an arbitrary S-poset. In Section 3, we first find con-
ditions for when all generators are regular d-injective or weakly regularly injective.
Then, we prove that every M-injective object in Pos-S/BS is a split epimorphism,
where M = Emb is the class of all order-embeddings of S-posets. Also, we in-
vestigate the relationship between regular injectivity in Pos-S and Pos-S/BS and
generators and cyclic projectives which becomes evident when passing to acts over
their endomorphism monoids.

For the rest of this section, we give some preliminaries about S-acts, S-posets
and slice category which we will need in the sequel. The reader is referred to [13]
and [3], respectively, for information on general properties of S-acts and S-posets
that are not fully explained here.

Let S be a monoid with identity 1. Recall that a (right) S-act is a set A
equipped with a map µ : A × S → A called its action, such that, denoting µ(a, s)
by as, we have a1 = a and a(st) = (as)t, for all a ∈ A, and s, t ∈ S. The category
of all S-acts, with action-preserving (S-act) maps (f : A → B with f(as) = f(a)s,
for s ∈ S, a ∈ A), is denoted by Act-S. For instance, take any monoid S and a
non-empty set A. Then A becomes a right S-act by defining as = a for all a ∈ A,
s ∈ S; we call that A an S-act with trivial action. Clearly S itself is an S-act with
its operation as the action.

On a monoid S we define the following relations: for every s, t ∈ S

1. sRt iff sS = tS.

2. sJt iff SsS = StS.

3. sDt iff there exists u ∈ S with sS = uS and St = Su.

These relations are called Green’s relations on S (see [13]). Here, we consider these
notions for a pomonoid S and supply some suitable results. A monoid S is said to
be a partially ordered monoid (briefly a pomonoid) if it is also a poset whose partial
order ≤ is compatible with the binary operation, i.e., s ≤ t, s′ ≤ t′ imply ss′ ≤ tt′

(see [2]). In this paper S denotes a pomonoid with an arbitrary order, unless
otherwise stated.

Let S be a pomonoid and A be a poset. Then A × S becomes a poset with
componentwise order. A poset A is said to be a (right) S-poset over a pomonoid S
if it is an S-act and the action is monotone ((a1, s1) ≤ (a2, s2) implies, a1s1 ≤ a2s2,
where a1, a2 ∈ A and s1, s2 ∈ S). We denote it by AS . The category of all S-
posets with action preserving monotone maps is denoted by Pos-S. Clearly S itself
is an S-poset with its operation as the action. A left S-poset A can be defined
analogously (see [3]) and denoted by SA. Also, we denote the category of all left S-
posets with action preserving monotone maps by S-Pos. As in the unordered case,
the coproduct in Pos-S is simply the disjoint union, with S-action and order given
componentwise, and as usual the coproduct of a family {Ai | i ∈ I} will be denoted
by

∐

i∈I Ai. Let T and S be pomonoids. Then a poset A is called a T -S-biposet if
it is a left T -poset and a right S-poset and (ta)s = t(sa) for every s ∈ S, t ∈ T and
a ∈ A. We denote it by TAS .
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We recall the following results from [14]:
(i) For every AS in Pos-S, consider the set End(AS) = PosS(A,A) as a

pomonoid with respect to composition and pointwise order. We define the left
End(AS)-action on A by f · a = f(a), for every f ∈ End(AS), a ∈ A. Note that
this action is monotone because if f, g ∈ End(AS) and a, b ∈ A are such that f ≤ g
and a ≤ b then we have f · a = f(a) ≤ f(b) ≤ g(b) = g · b. Thus one has End(AS)AS .

(ii) The following two mappings are pomonoid homomorphisms:

ρ : S → End(AS); s 7→ ρs,

(1.1) λ : T → End(TA); t 7→ λt.

Here, ρs : AS → AS , a 7→ as and λt : TA → TA, a 7→ ta are morphisms in Pos-S
and T -Pos, respectively.

(iii) For every T -S-biposet TAS recall that ifB ∈Pos-S then the setPosS(B,A)
of all S-poset maps from BS to AS is an object in T -Pos with the action defined
by t · f = λtf for every t ∈ T, f ∈ PosS(B,A). Consequently, we have a functor

PosS(−, A) : Pos-S → T -Pos

by taking
PosS(−, A)(B) = PosS(B,A)

for every B ∈ Pos-S.
An S-poset GS is a generator in the category Pos-S if for any distinct S-poset

maps α, β : XS → YS there exists an S-poset map f : GS → XS such that αf 6= βf .
For any category C and an object B of C, there is a slice category (also called

comma category) C/B. The objects of C/B are morphisms of C with codomain B,
and morphisms in C/B from one such object f : F → B to another g : E → B are
commutative triangles in C:

F
h //

f
��
@@

@@
@@

@@
E

g
��~~
~~
~~
~~

B

i.e, gh = f . We write h : f → g. The composition in C/B is defined from the
composition in C, in the obvious way– the triangles are pasted together (for more
details see [15]).

A poset is said to be complete if each of its subsets has an infimum and a supre-
mum, in particular, a complete poset is bounded, that is, it has a least (bottom)
element ⊥ and a greatest (top) element ⊤.
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2. Some Homological Classifications for Pomonoids by Generators in

Pos-S

In this section, we discuss the properties of generators and projective generators
in Pos-S. Recall that a projective S-poset AS which is also a generator is called
a projective generator S-poset. A cyclic S-poset is an S-poset A for which there
exists an element a ∈ A such that A = aS. By a cyclic projective S-poset we mean
a cyclic S-poset which is also projective.

As we mentioned in the introduction, generators for the category Pos-S were
characterized in [14] with the following two propositions.

Proposition 2.1. Cyclic projectives in Pos-S are precisely retracts of SS.

Proposition 2.2. An S-poset AS is a cyclic projective generator in Pos-S if and
only if AS

∼= eSS for an idempotent e ∈ S with eJ1.

The following is immediate from Proposition 2.2:

Proposition 2.3. Let S be a commutative pomonoid. Then all cyclic projective
generators in Pos-S are isomorphic to SS.

We will also need the following characterization of cyclic projective S-posets
from [19, Proposition 4.2].

Proposition 2.4. Let AS be an S-poset and a ∈ A. Then the following statements
are equivalent:
(i) aSS is projective.
(ii) aSS

∼= eSS for some idempotent e ∈ S.

We state the following two facts about projectives and generators from [19] and
[14] respectively. They will be used throughout the paper.

Theorem 2.5. An S-poset PS is projective if and only if PS
∼=

∐

i∈I eiS where
e2i = ei ∈ S, i ∈ I.

Theorem 2.6. The following assertions are equivalent for a right S-poset AS.

1. For all XS , YS ∈ Pos-S and f, g ∈ PosS(X,Y ), f ≤ g whenever fk ≤ gk for
all k ∈ PosS(A;X).

2. AS is a generator.

3. For every XS ∈ Pos-S there exists a set I and an epimorphism h :
∐

I A → X
in Pos-S.

4. There exists an epimorphism π : A → S in Pos-S.

5. SS is a retract of AS.
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Now we can prove the following result.

Theorem 2.7. Every S-poset PS is projective generator if and only if PS =
∐

i∈I Pi

where Pi
∼= eiS for every i ∈ I, and at least one Pj, j ∈ I is a generator with ejJ1.

Proof. On the one hand, let the S-poset PS be a projective generator. By Theorem
2.5 we have PS

∼=
∐

i∈I eiS where e2i = ei ∈ S, i ∈ I. And by Theorem 2.6 there
exists a surjective S-poset epimorphism π : PS−→SS , so 1 = π(a) for some a ∈
ejS, j ∈ I. Now π|ejS : ejS−→SS is also an epimorphism in Pos-S, because for any
s ∈ S we have s = 1s = π(a)s = π(as) and as ∈ ejS. Hence, ejS is a generator and
by Proposition 2.2, ejJ1.
On the other hand, assume that PS has the factorisation in the statement of the
theorem. By Theorem 2.5, PS is projective. That Pj is generator, implies that
there exists an S-poset epimorphism πj : Pj−→SS . Now, for the following diagram

Pi
ιi //

qi
  A

AA
AA

AA
A

PS

f̄

��

SS

take qj = πj and qi the composite S-poset map Pi
∼= eiS →֒ S for every i ∈ I, i 6= j.

By the property of the coproduct S-poset PS =
∐

i∈I Pi, corresponding to the S-
poset epimorphisms {qi | i ∈ I}, there exists a unique S-poset map π : P−→SS

such that π|Pi
= qi for all i ∈ I. In particular, π|Pj

= πj and πj is an S-poset
epimorphism, so π is also an S-poset epimorphism. Hence, PS is generator. 2

Notice that for every pomonoid S and idempotent e ∈ S, the sub S-poset eSS of
SS is projective according to Proposition 2.4, but it is not a generator because eJ1
does not necessarily hold. For example, if we take a periodic monoid S endowed
it with discrete order then we have a pomonoid. Now if we take an idempotent
1 6= e ∈ S, then eJ1 does not hold (see [13, Proposition I.3.26 on page 32] for more
details).

Next, we have the following result.

Theorem 2.8. For any pomonoid S the following statements are equivalent:
(i) All projective right S-posets are generators in Pos-S.
(ii) All cyclic projective right S-posets are generators in Pos-S.
(iii) eJ1 for every idempotent e ∈ S.

Proof. That (i) implies (ii) is clear. To see that (ii) implies (iii) observe that for
any idempotent e ∈ S, the right S-poset eSS is cyclic, hence it is a genreator by
assumption. The result thus follows by Proposition 2.2. .

For the implication (iii) ⇒ (i), let PS be an S-poset. By Theorem 2.5 we have
PS

∼=
∐

i∈I eiS where e2i = ei ∈ S, i ∈ I. By the assumption we have eiJ1 for every
i ∈ I and so PS is a generator by Theorem 2.7. 2
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Recall [4] that a right poideal of a pomonoid S is a (possibly empty) subset I
of S if it is both a monoid right ideal (IS ⊆ I) and a down set (a ≤ b, b ∈ I imply
that a ∈ I). It is principal if it is generated (as a monoid right ideal of S) by a
single element. For example

↓ rS = {t ∈ S : ∃s ∈ S, t ≤ rs}

is a principal poideal of S, for every r ∈ S.

In the following we shall characterize pomonoids for which all principal right
poideals are generators.

Proposition 2.9. Let S be a pomonoid and e ∈ S satisfy e2 = e. If the cyclic
projective sub S-poset eSS of SS is a generator in Pos-S, then ↓ eS is also a gen-
erator.

Proof. By assumption there exists an S-poset epimorphism f : eSS → SS . Define
the mapping g : ↓ eS → SS by g(x) := f(ex) for every x ∈ ↓ eS. It is easy to
see that g is an S-poset map. Also, for every s ∈ S there exists u ∈ S such that
f(eu) = s. Then we have

g(eu) = f(eeu) = f(eu) = s.

This means that g is an epimorphism. By Theorem 2.6 we conclude that ↓ eS is a
generator, as required. 2

Lemma 2.10. Let S be a pomonoid and z ∈ S. If the principal right poideal ↓ zS
is a generator in Pos-S, then there exist x, y ∈ S such that 1 ≤ yx, and za ≤ zb,
a, b ∈ S implies ya ≤ yb.

Proof. Since ↓ zS is a generator in Pos-S, by Theorem 2.6, there exists an epimor-
phism g : ↓ zS → SS . Hence, there are elements u ∈ ↓ zS and t ∈ S such that u ≤ zt
and g(u) = 1. Let y = g(z) and x = t. Then yx = g(z)x = g(zx). Since u ≤ zx, the
monotonicity of g implies that g(u) ≤ g(zx). Consequently, 1 = g(u) ≤ g(zx) = yx.
Now, suppose za ≤ zb, a, b ∈ S. Then ya = g(z)a = g(za) ≤ g(zb) = g(z)b = yb. 2

Next we answer the question about the conditions under which the assumptions
of Proposition 2.9 are satisfied.

Proposition 2.11. Let S be a pomonoid in which the identity element is the top
element. If all poideals of S are generators in Pos-S, then the sub S-poset eSS of
SS is a generator in Pos-S, for every idempotent e ∈ S.

Proof. Assume that all poideals of S are generators in Pos-S. Then for every
idempotent e ∈ S, ↓ eS is a generator in Pos-S. By Lemma 2.10, there exist
x, y ∈ S such that 1 ≤ yx, and ea ≤ eb, a, b ∈ S, always implies ya ≤ yb. In
particular, since e1 ≤ ee we have y ≤ ye, so 1 ≤ yx ≤ yex. As we have yex ≤ 1
by the hypothesis, we get yex = 1, which means that eJ1. So eSS is a projective
generator by Proposition 2.2, as needed. 2
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Theorem 2.12. Let S be a pomonoid in which the identity element is the top
element. The following statements are equivalent:
(i) All projective right S-posets are generators in Pos-S.
(ii) All cyclic projective right S-posets are generators in Pos-S.
(iii) eJ1 for every idempotent e ∈ S.
(iv) All principal right poideals of S which are generated by an idempotent, are
generators in Pos-S.

Proof. The equivalence of the first three statements is Theorem 2.8.
That (iii) implies (iv) is easy. Indeed, by Proposition 2.2 we get that eSS is a

cyclic projective generator, and Proposition 2.9 shows that ↓ eS is a generator in
Pos-S.

To finish off, we show that (iv) implies (iii). Consider the principal right poideal
↓ eS for every idempotent e ∈ S which is a generator in Pos-S. By a proof similar to
that of Proposition 2.11, the cyclic projective sub S-poset eSS of SS is a generator.
Using Proposition 2.2, we conclude that eJ1. 2

By a free S-poset on a poset P we mean an S-poset F together with a poset
map τ : P → F with the universal property that given any S-poset A and any poset
map f : P → A there exists a unique S-poset map f̄ : F → A such that f̄ ◦ τ = f,
i.e, the diagram

P
τ //

f
��
@@

@@
@@

@@
F

f̄

��

A

commutes. The S-poset F (up to isomorphism) is given by F = P × S with
componentwise order and the action (x, s)t = (x, st), for x ∈ P and s, t ∈ S (see [3]
for example). Furthermore, by a free S-poset we mean an S-poset which is free on
some poset.

Example 2.13. Let S be a pomonoid generated by the elements e, k, k′ and with
discrete order such that kk′ = 1, e2 = e and ek = k′. Then eSS is a cyclic projective
generator in Pos-S. But eSS is not free (see Lemma 2.14 below). 2

Now, we present some condition under which the sub S-posets eSS of SS are free
for idempotent elements e ∈ S. The proof of the following result is similar to the
proof for the unordered case in [13, Proposition 3.17.17], so we omit it. Moreover,
we conclude when projectivity (or cyclic projectivity) implies freeness in Pos-S.

Lemma 2.14. Let e be an idempotent of a pomonoid S. Then the sub S-poset eSS

of SS is a free right S-poset if and only if eD1. 2

This allows us to prove the following.

Theorem 2.15. For any pomonoid S the following statements are equivalent:
(i) All projective right S-posets are free.
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(ii) All projective generators in Pos-S are free.
(iii) All cyclic projective right S-posets are free.
(iv) eD1 for every idempotent e ∈ S.

Proof. The implication (i) ⇒ (ii) is trivial.
To see (ii) ⇒ (iii), observe that by Proposition 2.4, all cyclic projective S-

posets are isomorphic to eSS for some idempotent e ∈ S. Let A = SS

∐

eSS. By
Proposition 2.7, AS is a projective generator in Pos-S. By hypothesis AS is free
which implies that eSS is free.

Now we show that (iii) ⇒ (i). By decomposition theorem in [19], every projec-
tive S-poset is isomorphic to a coproduct of cyclic projective S-posets which are
free by assumption. Now since the coproducts of free S-posets being free we get the
result.

By the characterization of cyclic projective S-posets in Proposition 2.4 and
Lemma 2.14 we get the equivalence of (iii) and (iv), which completes the proof. 2

3. Regular Injectivity in Pos-S and Pos-S/BS and Generators

Let C be a category and M a class of its morphisms. An object I of C is called
M-injective if for each M-morphism h : U → V and morphism u : U → I there
exists a morphism s : V → I such that sh = u. That is, the following diagram is
commutative:

U

h

��

u // I

V

s

??�
�

�
�

In particular, this means that, in the slice category C/B, an object f : X → B is
M-injective if, for any commutative diagram in C

U
u //

h

��

X

f

��

V
v

// B

with h ∈ M, there exists an arrow s : V → X such that sh = u and fs = υ.

U
u //

h

��

X

f

��

V

s~
~

>>~
~

v
// B

Recall that regular monomorphisms (morphisms which are equalizers) in Pos-S
(and also in Pos-S/BS) are exactly order-embeddings (see [3] and [6]). By Emb-
injectivity in Pos-S we mean M-injectivity in Pos-S, where M = Emb is the class
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of all order-embeddings of S-posets. In the following we shall deal with Emb-
injectivity in Pos-S and Pos-S/BS , where Emb is the class of all order-embeddings
of S-posets.

Theorem 3.1. All generators in Pos-S are Emb-injective if and only if all S-posets
are Emb-injective.

Proof. Clearly it is enough to show the forward implication. Let AS be an S-poset.
Consider the product S-poset AS × SS which is a generator in Pos-S by Theorem
2.6 and so is Emb-injective. By a general category-theoretic result which states that
a product of a family of injective objects in a category is injective if and only if each
component of the product is injective, we get that AS is Emb-injective in Pos-S.
2

Note that the class of all embeddings of right poideals into SS is a subclass of
all down-closed embeddings in Pos-S, i.e. all embeddings g : BS → CS with the
property that g(B) is down-closed in C, and hence is a subclass of all embeddings.

Definition 3.2. An S-poset AS is called (principally) weakly regularly d-injective
if it is injective with respect to all embeddings of (principal) right poideals into SS .

Proposition 3.3. If all generators in Pos-S are weakly regularly d-injective then
all S-posets are weakly regularly d-injective.

Proof. Let AS be an S-poset. Since AS × SS is a generator in Pos-S it is a weakly
regularly d-injective. To show that AS is weakly regularly d-injective consider the
following diagram

IS��

i

��

u // AS

SS

where I is a poideal of S. Define S-poset map ū : IS → AS ×SS by ū(s) = (u(s), s)
for each s ∈ IS . By the assumption, there exists an S-poset map v : SS → AS ×SS

such that vi = ū.

IS��

i

��

ū // AS × SS

SS

v

::u
u

u
u

u

Now by composition v with the projection πA : AS × SS → AS , we get AS is a
weakly regularly d-injective. 2

For a pomonoid S recall that an element s ∈ S is called regular if there exists
t ∈ S such that sts = s. One calls S a regular pomonoid if all its elements are
regular.
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Theorem 3.4. Let S be a pomonoid whose identity element is the top element.
Then the following statements are equivalent:
(i) All S-posets are principally weakly regularly d-injective.
(ii) All principal right poideals of S are principally weakly regularly d-injective.
(iii) All generators in Pos-S are principally weakly regularly d-injective.
(iv) S is a regular pomonoid.

Proof. The equivalence of (i) and (iii) comes from (the proof of) Proposition 3.3.
The implication (iv) ⇒ (i) is in [18, Theorem 3.6] and the implication (i) ⇒ (ii) is
trivial, so it is enough for us to show the implication (ii) ⇒ (iv).

So assume (ii). For every s ∈ S, consider the down-closed embedding i : ↓ sS →
SS , x 7→ x. It has a left inverse f , as ↓ sS is principally weakly regularly d-injective.
Taking f(1) = z, we have z ≤ st for some t ∈ S and

s = f(s) = f(1)s = zs ≤ sts.

On the other hand, sts ≤ s, as 1 is the top element of S. Therefore sts = s, showing
that s is a regular element. As this was for any s, S is a regular pomonoid. 2

Recall from [4] that a pomonoid S which has no proper non-empty left (right)
poideal is said to be left (right) simple.

Corollary 3.5. If all generators in Pos-S are Emb-injective then S is left simple.

Proof. From the hypothesis and Theorem 3.1, we conclude that all complete S-
posets are Emb-injective. It follows then from [4, Theorem 3.9] that S is left simple.
2

Proposition 3.6. For any pomonoid S the following statements are equivalent:
(i) All generators in Pos-S are complete S-posets.
(ii) All S-posets are complete.

Proof. First assume (i). Let AS be an S-poset. Consider the generator AS × SS ,
which is a complete S-poset by assumption. Since the order on the product AS×SS

is the componentwise order, joins are computed componentwise in the product as
well. That is, for a subset T ⊆ AS ×BS we have

∨

T = (
∨

πA(T ),
∨

πB(T )) where
πA and πB are canonical projections on AS and BS , respectively. Therefore, for
any subset B ⊆ A,

∨

B exists and so AS is complete, giving (ii).

The converse implication is trivial. 2

We state the following result from [7, Proposition 3.17] that will be used later
on. We give a direct proof of it here, for the convenience of the reader .

Proposition 3.7. Let S be a pomonoid and BS ∈ Pos-S. Suppose f : AS → BS is
an Emb-injective object in Pos-S/BS. Then f is a split epimorphism in Pos-S.

Proof. By the universal property of the coproduct S-poset A∪̇B (the disjoint union
of A and B) there exists a unique S-poset map f̄ : A∪̇B → B such that the following
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diagram commutes where iA and iB are injection S-poset maps.

A

f
""D

DD
DD

DD
DD

iA // A∪̇B

f̄

��
�

�

� B
iBoo

idB
||yy
yy
yy
yy
y

B

In fact,

f̄(x) =

{

f(x) if x ∈ A

x if x ∈ B.

Now, let us consider the following commutative square

A
idA //

iA
��

A

f

��

A∪̇B

h

<<y
y

y
y

f̄

// B

Since f is an Emb-injective object in Pos-S/BS, there exists a unique S-poset map
h : A∪̇B → A such that fh = f̄ and hiA = idA. So fhiB = f̄ iB = idB , which
shows that f is a split epimorphism in Pos-S. 2

Remark 3.8. There exist split epimorphisms in Pos-S which are not Emb-injective
in Pos-S/BS. To present an example, take an arbitrary pomonoid S and let X and
B be, respectively, the first and second lattices shown in the following diagram:

⊤
•

a•

���������
•b

>>>>>>>>

•

⊥

>>>>>>>>

��������

•1

•0

Evidently, X is an S-poset with the action defined by ⊤s = ⊤ and as = bs = ⊥s = a
for all s ∈ S, also we consider B with the trivial action as an S-poset. Define the
S-poset map f : XS → BS , by f(a) = f(b) = f(⊥) = 0 and f(⊤) = 1. Then f is a
convex map. We show that it is not a regular injective object in Pos-S/BS. Since
f−1(0) = {⊥, a, b} is not a complete lattice, the authors in [6] showed that it is not
Emb-injective in Pos-S/BS.

On the other hands, define the S-poset map g : BS → XS by g(0) = ⊥, g(1) =
⊤. Then we have fg = idB, so f is a split epimorphism. Therefore, the converse of
the above proposition is not true generally. 2
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Next recall that for a given poset P and a pomonoid S, the cofree S-poset on P
is the set P (S) of all monotone maps from S to P , with pointwise order and action
given by (fs)(t) = f(st) for s, t ∈ S and f ∈ P (S) (see also [3, Theorem 13]).

Corollary 3.9. Suppose f : AS → BS is an Emb-injective object in Pos-S/BS. If
A is a complete lattice which is also a retract of the cofree S-poset A(S), then AS

and BS are Emb-injective object in Pos-S.

Proof. By hypothesis we conclude that A(S) is an Emb-injective S-poset (see [4,
Theorem 3.3]). Also it is straightforward to see that a retract of a Emb-injective
S-poset is Emb-injective and so we get AS is an Emb-injective S-poset. Also, by
Proposition 3.7 the S-poset map f is a split epimorphism. Consequently BS being
a retract of an Emb-injective S-poset is an Emb-injective S-poset. 2

At the rest of this section, we investigate some connections between Emb-
injectivity in Pos-S/BS and generators and cyclic projectives in Pos-S.

Theorem 3.10. If f : AS → BS is an Emb-injective object in Pos-S/BS and
BS is a generator in Pos-S then AS is a generator. Further, End(AS)A is a cyclic
projective in End(AS)-Pos.

Proof. Since f : AS → BS is Emb-injective object in Pos-S/BS, by Proposition
3.7, there exists g : BS → AS in Pos-S such that fg = idB. As BS is a generator
in Pos-S and f is an epimorphism, AS is also a generator (see [14]). Now, applying
this fact and [14, Theorem 2.2], we get that End(AS)A is a cyclic projective. 2

Theorem 3.11. Suppose f : AS → BS is an Emb-injective object in Pos-S/BS

where AS is a cyclic projective S-poset. Then BS is a cyclic projective S-poset.
Moreover, End(BS)B is a generator in End(BS)-Pos.

Proof. Since f : AS → BS is Emb-injective object in Pos-S/BS, by Proposition
3.7, there exists g : BS → AS in Pos-S such that fg = idB . Also, AS is a
cyclic projective in Pos-S hence by Proposition 2.1, there exist two S-poset maps

SS

π // AS
γ

oo such that πγ = idA. This yields fπγg = idB which shows that BS

is a retract of SS . We get BS is a cyclic projective S-poset by Proposition 2.1, so
by [14, Proposition 3.1], we conclude that End(BS)B is a generator in End(BS)-Pos.
2

Theorem 3.12. Suppose f : AS → BS is an Emb-injective object in Pos-S/BS.
Then all of the following hold.
(i) PosS(BS , AS) is a generator in Pos-End(BS).
(ii) PosS(AS , BS) is a generator in End(BS)-Pos.
(iii) PosS(BS , AS) is a cyclic projective in End(AS)-Pos.
(iv) PosS(AS , BS) is a cyclic projective in Pos-End(AS).

Proof. Since f : AS → BS is Emb-injective object in Pos-S/BS, in view of Propo-
sition 3.7, there exists g : BS → AS such that fg = idB. Applying the functors
PosS(BS ,−) and PosS(−, BS) to the identity map idBS

we can easily get the as-
sertions (i) and (ii), respectively. Again by applying the functors PosS(−, AS) and
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PosS(AS ,−) to the above identity, in light of Proposition 2.1, we can deduce that
the statements (iii) and (iv) are true. 2

Proposition 3.13. Let AS be an S-poset. Then in any of the following cases
PosS(AS ×BS , BS) is a generator in End(BS)-Pos, for every BS ∈Pos-S:
(i) AS is an Emb-injective S-poset.
(ii) f : AS → BS is an Emb-injective object in Pos-S/BS.

Proof. (i) Consider the second projection S-poset map πB : AS × BS → BS .
The authors in [6] have showed that it is an Emb-injective object in Pos-S/BS .
Consequently, by Theorem 3.12(ii), we get the result.
(ii) By Proposition 3.7, there exists an S-poset map g : BS → AS such that fg =
idB. By the universal property of the product S-poset A×B there exists a unique
S-poset map ϕB : BS → A × B (indeed b 7→ (g(b), b)) such that the following
diagram commutes:

A A×B
πAoo

πB // B

B

g

ccFFFFFFFFF
ϕB

OO�
�
� idB

;;xxxxxxxxx

i.e., πBϕB = idB and πAϕB = g. Applying the functor PosS(−, BS) to the first
identity above we obtain

End(BS) = PosS(B,B)
π̄B //

PosS(A×B,B)
ϕ̄B

oo

such that ϕ̄Bπ̄B = idEnd(BS). This means that End(BS) is a retract of PosS(A ×
B,B) as we needed (see Theorem 2.6 again). 2

Proposition 3.13. Suppose that BS is in Pos-S, TAS is a T -S-biposet, and A×B
is a cyclic projective S-poset. If f : AS → BS is an Emb-injective object in Pos-
S/BS and λ : T → End(AS), defined as in (1.1), is an isomorphism then TA is a
generator in T -Pos.

Proof. Consider the second projection S-poset map πA : A × B → AS and the
unique S-poset map ϕA : AS → A × B for which πAϕA = idA. That is, let
ϕA(a) = (a, f(a)). Since A×B is a cyclic projective S-poset by assumption, there

exist S-poset maps A×B
γ

// SS
π

oo such that πγ = idA×B. Applying the functor

PosS(−, AS) to the former identity and knowing that the composition πAπγϕA =
idA, we obtain

T ∼= PosS(A,A)
π̄A //

PosS(A×B,A)
ϕ̄A

oo
π̄ //

PosS(S,A) ∼=T A
γ̄

oo

in which ϕ̄Aπ̄A = idPosS(A,A) and γ̄π̄ = idPosS(S,A). Thus, T is a retract of TA and
hence TA is a generator in Pos-S. 2
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