Acknowledgement
This work was supported by P.R.F.U. Research Grant number C00L03EP130120190001.
References
- K. Akutagawa, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl., 4(3)(1994), 239-258. https://doi.org/10.1016/0926-2245(94)00015-8
- T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampre Equations, Spring-Verlag(1982).
- M. Bekiri and M. Benalili, Nodal solutions for elliptic equation involving the GJMS operators on compact manifolds, Complex Var. Elliptic Equ., 64(12)(2019), 2105-2116. https://doi.org/10.1080/17476933.2019.1579209
- M. Benalili and K. Tahri, Nonlinear elliptic fourth order equations existence results, Nonlinear differential equations and applications, NoDEA Nonlinear Differential Equations Appl., 18(5)(2011), 539-556. https://doi.org/10.1007/s00030-011-0106-5
- M. Benalili and A. Zouaoui, Elliptic equation with critical and negative exponents involving the GJMS operator on compact Riemannian manifolds, J. Geom. Phys., 140(2019), 56-73. https://doi.org/10.1016/j.geomphys.2019.02.003
- P. Buser, Riemannsche Flachen mit Eigenwerten in (0, 1/4), Comment. Math. Helv., 52(1)(1977), 25-34. https://doi.org/10.1007/BF02567355
- Y. Canzani, R. Gover, D. Jakobson and R. Ponge, Conformal invariants from nodal sets.I.Negative eigenvalues and curvature prescription, Int. Math. Res. Not. IMRN 2014, 9(2014), 2356-2400.
- Z. Djadli, Operateurs geometriques et geometrie conforme, Seminaire de geometrie spectrale et geometrie , Grenoble, 23(2005), 49-103.
- Z. Djadli, E. Hebey and M. Ledoux, Paneitz type operators and applications, Duke Math. J., 104(2000), 129-169.
- C. R. Graham, R. Jenne, L. J. Masson and G. A. J. Sparling, Conformally invariant powers of the Laplacien. I.Existence, J. London Math. Soc.(2), 46(3)(1992), 557-565. https://doi.org/10.1112/jlms/s2-46.3.557
- M. J. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phy., 207(1999), 131-143. https://doi.org/10.1007/s002200050721
- M. J. Gursky and A. Malchiodi. A strong maximum principal for the Paneitz operator and a nonlocal flow for the Q-curvature, J. Eur. Math. Soc. (JEMS), 17(9)(2015), 2137-2173. https://doi.org/10.4171/JEMS/553
- E. Hebey, Introduction a l'analyse non lineaire sur les varietes, Diderot editeur, Arts et Sciences(1997).
- E. Hebey and F. Robert, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations, 13(4)(2001), 491-517. https://doi.org/10.1007/s005260100084
- A. Juhl, Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct. Anal., 23(4)(2013), 1278-1370. https://doi.org/10.1007/s00039-013-0232-9
- J. Lohkamp, Discontinuity of geometric expansions, Comment. Math. Helv., 71(2)(1996), 213-228. https://doi.org/10.1007/BF02566417
- S. Mazumdar, GJMS-type operators on a compact Riemannian manifold: best constants and Coron-type solutions, J. Differential Equations, 261(9)(2016), 4997-5034. https://doi.org/10.1016/j.jde.2016.07.017
- S. Paneitz. A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds (summary), SIGMA Symmetry integrability Geom. Methods Appl., 4(2008), 3pp.
- K. Tahri, Multiple Solutions to polyharmonic elliptic problem involving GJMS operator on compact manifolds, Afr. Mat., 31(2020), 437-454. https://doi.org/10.1007/s13370-019-00734-8
- Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117(1965) 251-275. https://doi.org/10.1090/S0002-9947-1965-0174022-6
- A. P. C. Yang and S. Y. A. Chang, On a fourth order curvature invariant, Contemp. Math., 237(1999).
- P. C. Yang and X. W. Xu, Positivity of Paneitz operators, Discrete Contin. Dynam. Systems, 7(2)(2001), 329-342. https://doi.org/10.3934/dcds.2001.7.329