DOI QR코드

DOI QR Code

V2X 정보를 활용한 VRU 충돌 회피 알고리즘 개발

Design of Algorithm for Collision Avoidance with VRU Using V2X Information

  • 장선오 (국민대학교 자동차공학전문대학원) ;
  • 이상엽 (국민대학교 자동차공학전문대학원) ;
  • 박기홍 (국민대학교 자동차공학과) ;
  • 신재곤 (자동차안전연구원 자율주행연구처) ;
  • 엄성욱 (자동차안전연구원 자율주행실) ;
  • 조성우 (자동차안전연구원 자율주행실)
  • 투고 : 2021.12.18
  • 심사 : 2022.01.01
  • 발행 : 2022.02.28

초록

자율주행 차량은 레이더, 라이다 카메라 등 다양한 로컬 센서들을 활용하여 주변 환경을 인지하고 판단하여 주행한다. 하지만 로컬 센서만을 활용하여 주행할 경우 인지 범위 한계로 장애물에 가려진 보행자나 자전거와 같은 VRU(Vulnerable Road User, 취약 도로 사용자)의 거동 정보를 예측하기 어렵다. 본 논문에서는 이러한 로컬 센서의 한계를 극복하기 위해 V2X 통신 정보를 활용한 VRU 충돌 회피 알고리즘을 개발하였다. 알고리즘은 인프라로부터 충돌 위험이 있는 VRU의 정보를 전달 받아 미래 거동을 예측하고 주변 환경에 따라 적절하게 조향 및 제동 회피를 수행하도록 설계하였다. 개발된 알고리즘을 검증하기 위하여 다양한 조건의 시나리오에서 시뮬레이션을 수행하였으며, 그 결과, 기존 로컬 센서 정보만을 활용하였을 때보다 개선된 충돌 회피 성능을 보일 뿐만 아니라, 차량의 안정성 또한 확보할 수 있음을 확인하였다.

Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.

키워드

과제정보

본 연구는 국토교통부 및 국토교통과학기술진흥원의 연구비 지원(21PQOWB152473-03)으로 수행하였습니다.

참고문헌

  1. The European Automobile Manufacturers' Association(ACEA)(2018), Bicyclist target The European Automobile Manufacturers' Association specifications, p.6.
  2. Bachmann, M., Morold, M. and David, K.(2021), "On the Required Movement Recognition Accuracy in Cooperative VRU Collision Avoidance Systems", IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp.1708-1717. https://doi.org/10.1109/TITS.2020.2976593
  3. Bachmann, M., Morold, M., Engel, S. and Gotz, J.(2020), "Camera vs. Cooperative VRU Collision Avoidance", 2020 IEEE 91st Vehicular Technology Conference, pp.1-5.
  4. Bae, I., Moon, J. Y., Park, H. B. and Kim, J. H.(2013), "Path generation and tracking based on a Bezier curve for a steering rate controller of autonomous vehicles", 16th International IEEE Conference on Intelligent Transportation Systems, pp.436-441.
  5. Baek, M., Jeong, D., Choi, D. and Lee, S.(2020), "Vehicle Trajectory Prediction and Collision Warning via Fusion of Multisensors and Wireless Vehicular Communications", Sensors, vol. 20, no. 1, p.288. https://doi.org/10.3390/s20010288
  6. Breuer, J. J., Faulhaber, A., Frank, P. and Gleissner, S.(2007), "Real world safety benefits of brake assistance systems", 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV).
  7. Canalys, https://www.canalys.com/newsroom/Canalys-US-intelligent-vehicle-analysis-Q1-2020, 2020.06.04.
  8. Carels, D., Vandenberghe, W., Moerman, I. and Demeester, P.(2011), "Architecture for vulnerable road user collision prevention system (VRU-CPS), based on local communication", 18th World Congress on Intelligent Transport Systems, pp.5500-5509.
  9. Chun, K. H. and Lee, I. S.(2012), "Collision Avoidance Fuzzy Control for Pedestrian Protection", Proceedings of Korean Institute of Information Technology Conference, pp.318-322.
  10. Euro NCAP(2021), EUROPEAN NEW CAR ASSESSMENT PROGRAMME TEST PROTOCOL-AEB VRU systems.
  11. Gandhi, T. and Trivedi, M. M.(2006), "Pedestrian collision avoidance systems: A survey of computer vision based recent studies", 2006 IEEE Intelligent Transportation Systems Conference, pp.976-981.
  12. International Standards Organization(2018), ISO15622: Adaptive cruise control systems, pp.5-10.
  13. Jeong, S. H., Gim, J. H. and Ahn, C. S.(2018), "V2V Based Vehicle Detection and Collision Avoidance Algorithm", Transactions of The Korean Society of Automotive Engineers, vol. 26, no. 6, pp.773-782. https://doi.org/10.7467/KSAE.2018.26.6.773
  14. Kim, D. H., Ha, Y. C., Kim, S. H. and Lee, S. Y. et al.(2021), "Development of Cooperative Autonomous Driving Algorithm Using V2V Communication for Convoy Driving", Transactions of The Korean Society of Automotive Engineers, vol. 29, no. 4, pp.307-319. https://doi.org/10.7467/KSAE.2021.29.4.307
  15. Kim, J. Y., Ji, Y. K. and Jo, H. S.(2018), "Adaptive AEB control logic design based on steerable path decision for multi-target vehicles", The Korean Society of Automotive Engineers Conference, pp.791-796.
  16. Kim, Y. G., Park, C. H., Yu, D. Y. and Jeon, S. Y.(2018), "Development of Steering Assist System for Emergency Steering Avoidance", Transactions of the Korean Society of Mechanical Engineers-A, vol. 42, no. 5, pp.437-444.
  17. Li, H., Luo, Y. and Wu, J.(2019), "Collision-Free Path Planning for Intelligent Vehicles Based on Bezier Curve", IEEE Access, vol. 7, pp.123334-123340. https://doi.org/10.1109/access.2019.2938179
  18. Ministry of Land, Infrastructure and Transport(2016), Road design standards, pp.3-12.
  19. Oh, T. Y., Son, W. I., Ahn, T. W., Lee, Y. K. and Park, K. H.(2021), "Development of Automated Lane Change Algorithm Considering Safety of Surrounding Vehicles", Transactions of The Korean Society of Automotive Engineers, vol. 29, no. 5, pp.391-405. https://doi.org/10.7467/KSAE.2021.29.5.391
  20. Ojala, R., Vepsalainen, J., Hanhirova, J. and Hirvisalo, V.(2020), "Novel Convolutional Neural Network-Based Roadside Unit for Accurate Pedestrian Localisation", IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp.3756-3765. https://doi.org/10.1109/tits.2019.2932802
  21. Park, M. B., Lee, S. H., Jun, S. B. and Yang, M. Y.(2014), "Development of Control Algorithm for Intersection Safety System Using the Fusion of V2X and Environmental Sensors", Transactions of The Korean Society of Automotive Engineers, vol. 22, no. 5, pp.126-135. https://doi.org/10.7467/KSAE.2014.22.5.126
  22. Society of Automotive Engineers International Surface Vehicle Standard(2016), Dedicated Short Range Communications (DSRC) Message Set Dictionary, SAE Standard J2735.
  23. Scheunert, U., Cramer, H., Fardi, B. and Wanielik, G.(2004), "Multi sensor based tracking of pedestrians: a survey of suitable movement models", IEEE Intelligent Vehicles Symposium, pp.774-778.
  24. Scholler, C., Aravantinos, V., Lay, F. and Knoll, A.(2020), "What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction", IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.1696-1703. https://doi.org/10.1109/lra.2020.2969925
  25. Sederberg, T. W. and Farouki, R. T.(1992), "Approximation by interval Bezier curves", IEEE Computer Graphics and Applications, vol. 12, no. 5, pp.87-95. https://doi.org/10.1109/38.156018
  26. Shan, M., Narula, K., Wong, Y. F. and Worrall, S.(2021), "Demonstrations of Cooperative Perception: Safety and Robustness in Connected and Automated Vehicle Operations", Sensors, vol. 21, no. 1, p.200.
  27. Snider, J. M.(2009), Automatic steering methods for autonomous automobile path tracking, Robotics Institute, Carnegie Mellon University.
  28. Tsuji, T., Hattori, H., Watanabe, M. and Nagaoka, N.(2002), "Development of Night-Vision System", IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 3, pp.203-209. https://doi.org/10.1109/TITS.2002.802927
  29. Xu, F., Liu, X. and Fujimura, K.(2005), "Pedestrian detection and tracking with night vision", IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp.63-71. https://doi.org/10.1109/TITS.2004.838222
  30. Yun, H. S., Kim, T. H., Lee, I. G. and Jo, B. G.(2021), "A Study on the Autonomous Driving Method in the Intersection Area Using V2X Communication", Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, pp.457-458.