과제정보
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT: Ministry of Science and ICT) (No. NRF-2019R1F1A1059036).
참고문헌
- G. Creech & J. Hu. (2013). Generation of a new IDS test dataset: Time to retire the KDD collection. IEEE WCNC(Wireless Communications and Networking Conference). DOI : 10.1109/WCNC.2013.6555301
- K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk & Yoshua Bengio. (2014). Learning phrase Representations using RNN encoder-decoder for statistical machine translation. EMNLP, 1724-1734. arXiv:1406.1078. https://arxiv.org/pdf/1406.1078.pdf
- M. Xie & J. Hu. (2013). Evaluating host-based anomaly detection systems: a preliminary analysis of ADFA-LD. 6th IEEE International Congress on Image and Signal Processing (CISP '03), 1711-1716. DOI : 10.1109/CISP.2013.6743952
- G. Creech, & J. Hu. (2014). A semantic approach to host-based intrusion detection systems using contiguous and discontiguous system call patterns. IEEE Transactions on Computers, 63(4). DOI : 10.1109/TC.2013.13
- S. A. Maske & T. J. Parvat. (2016. Aug.). Advanced anomaly intrusion detection technique for host based system using system call patterns. International Conference on Inventive Computation Technologies (ICICT). Coimbatore, India. DOI : 10.1109/INVENTIVE.2016.7824846
- E. Aghaei. (2017). Machine learning for host-based misuse and anomaly detection in UNIX environment. Master Thesis, Computer Science in University of Toledo. DOI : 10.13140/RG.2.2.19382.73283
- B. Borisaniya & D. Patel. (2015). Evaluation of modified vector space representation using ADFA-LD and ADFA-WD datasets. Journal of Information Security, 6(3), 250-264. DOI : 10.4236/jis.2015.63025
- D. Kwon, K. Natarajan, S. C. Suh, H. Kim & J. Kim. (2018. July). An empirical study on network anomaly detection using convolutional neural networks. Proceedings of IEEE 38th International Conference Distributed Computing Systems(ICDCS), 1595-1598. DOI: 10.1109/ICDCS.2018.00178
- Canadian Institute for Cybersecurit. (n. d.). NSL-KDD Dataset. UNB(Online). https://www.unb.ca/cic/datasets/nsl.html
- Y. Fu, F. Lou, F. Meng, Z. Tian, H. Zhang & F. Jiang. (2018. June). An intelligent network attack detection method based on RNN. Proceedings of IEEE 3rd International Conference Data Science Cyberspace (DSC), 483-489. DOI : 10.1109/DSC.2018.00078
- C. Kim, M. Jang, S. Seo, K. Park & P. Kang. (2021). Intrusion detection based on sequential information preserving log embedding methods and anomaly detection algorithms. IEEE Access, 9, 58088-58101. DOI : 10.1109/ACCESS.2021.3071763
- T. Mikolov, K. Chen, G. Corrado & J. Dean. (2013). Efficient estimation of word representations in vector space. ICLR. arXiv:1301.3781v3. https://arxiv.org/pdf/1301.3781.pdf
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado & J. Dean. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems (NIPS). https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
- A. Vaswan, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser & I. Polosukhin. (2017). Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS). arXiv:1706.03762v5