DOI QR코드

DOI QR Code

A Study on Exploring Direction for Future Education for the Common Good Based on Big Data

빅데이터 기반 공동선 증진을 위한 미래교육 방향성 탐색 연구

  • Kim, Byung-Man (Department of Early Childhood Education, Kyungnam University) ;
  • Kim, Jung-In (Department of Computer Engineering, Tongmyong University) ;
  • Lee, Young-Woo (Department of Software, Catholic University of Pusan) ;
  • Lee, Kang-Hoon (Department of Big data center, Daedong College)
  • 김병만 (경남대학교 유아교육과) ;
  • 김정인 (동명대학교 컴퓨터공학과) ;
  • 이영우 (부산가톨릭대학교 소프트웨어학과) ;
  • 이강훈 (대동대학교 빅데이터센터)
  • Received : 2021.12.24
  • Accepted : 2022.02.20
  • Published : 2022.02.28

Abstract

The purpose of this study is to provide basic data onto preparing soft landing plan of future education policy by exploring direction of future education for the common good using big data and keyword network analysis. Based on the big data provided by Textom, data was collected under the keyword 'future education + common Good' and then keyword network analysis was performed. As a result of the research, it was found that 'common good', 'social', 'KAIST future warning', 'measures', 'research', 'future education', 'politics' were common keywords in the social awareness of future education for the common good. The results of this study suggest that the social awareness of future education for the common good is related to factors related to human, physical environment, social response, academic interest, education policy, education plan, and related variables, It was closely related. Based on these results, we suggested implications for the support for the preparation of a soft landing plan of future education for the common good.

본 연구는 빅데이터와 키워드 네트워크 분석을 통해 공동선 증진을 위한 미래교육 방향을 탐색함으로써 미래교육의 방향성 제안에 대한 기초자료를 제공하는 것을 목적으로 한다. Textom에서 제공하는 빅데이터를 기반으로 '미래교육 + 공통선'이라는 키워드로 데이터를 수집한 후 키워드 네트워크 분석을 수행했다. 연구결과 '공익', '사회', 'KAIST 미래경고', '대책', '연구', '미래교육', '정치' 등이 공동선을 위한 미래교육의 사회적 인식에서 공통 키워드인 것으로 나타났다. 이번 연구결과는 공동선 증진을 위한 미래교육에 대한 사회적 인식이 인간, 물리적 환경, 사회적 대응, 학문적 관심, 교육정책, 교육계획 및 관련 변수와 밀접한 관련이 있음을 시사한다. 이와 같은 결과를 바탕으로 공동선 증진을 위한 미래교육의 방향성 제안을 위한 기초자료 마련에 의미 있는 시사점을 제시하였다.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A5C2A04082033)

References

  1. O. Rhee., E. Kim., N. Shin & M. Moon. (2008). Developing models to integrate early childhood education and childcare in Korea. International Journal of Child Care and Education Policy, 2(1), 53-66. DOI : 10.1007/2288-6729-2-1-53
  2. S. H. Kim., K. S. Lim & H. K. Hong. (2014). A comparison between perception of kindergarten teachers and child-care teachers regarding the early childhood teacher education system on ECEC. Korean Journal of Early Childhood Education, 34(3), 379-400. DOI : 10.18023/kjece.2014.34.3.018
  3. M. K. Moon, E. S. Kim, J. K. Kim, H. I. Hwang, H. J. Moon, M. J. Kim & S. N. Yang. (2009). A study on application of early childhood education and childcare cooperation and integration system . Seoul (ROK) : Korea Institute of Child Care and Education [updated 2010 Apr 16; cited 2019 Dec 4] (Online). http://kicce.re.kr/board/boardFile/download/30/28360/7937.do.
  4. E. Adamson & D. Brennan. (2014). Social investment or private profit? Diverging notions of 'investment' in early childhood education and care. International Journal of Early Childhood., 46(1), 47-61. DOI : 10.1007/s13158-013-0098-x
  5. K. H. Lee & H. I. Hwang. (2020). A discourse analysis of Nuri-curriculum evaluation based on big data. Journal of Future Early Childhood Education, 27(4), 77-109. DOI : 10.22155/JFECE.27.4.77.109
  6. B. M. Kim & K. H. Lee. (2021). A study on exploring directions for early childhood safety education based on big data : Focus on semantic network analysis. Review of International Geographical Education, 11(2), 636-647. DOI : 10.33403/rigeo.800461
  7. H. I. Hwang, K. H. Lee & H. S. Je. (2018). A network analysis of young children' self-esteem based on big data. Korean Journal of Early Childhood Education, 38(4), 213-235. DOI : 10.18023/kjece.2018.38.4.009
  8. H. Hwang, S. H. Kim & K. H. Lee. (2017). A network analysis of mothers' happiness concepts based on big data. Journal of Future Early Childhood Education,, 25(2), 35-66. DOI : 10.22155/JFECE.25.2.45.66
  9. K. H. Lee & H. I. Hwang. (2020). A keyword network analysis of '2019 revised Nuri-curriculum evaluation' based on big data. The Journal of Korea Open Association for Early Childhood Education, 25(4), 79-109. DOI : 10.20437/KOAECE25-4-04
  10. W. S. Suh, K. H. Lee & S. W. Kim. (2019). A keyword network analysis for early childhood education finance : Focus on big data. The Journal of Learner-Centered Curriculum and Instruction, 19(12), 97-124. DOI : 10.22251/jlcci.2019.19.12.97
  11. B. M. Kim & K. H. Lee. (2020). An exploration of a directions for preparing early childhood finance policy to promote common good based on complexity : focusing on social discourse and competitive Discourse analysis. Journal of Learner-Centered Curriculum and Instruction. 20(10), 407-438. DOI : 10.22251/jlcci.2020.20.10.407
  12. Textom. (2021). Big Data Analysis Solution. The IMC(Online). http://www.textom.co.kr
  13. K. H. Lee & H. S. Je. (2018). A keyword network analysis of young children's creativity and personality based on big data. Journal of Future Early Childhood Education, 25(4), 121-144. DOI : 10.22155/JFECE.25.4.121.144
  14. R. N. Park, H. I. Hwang & K. H. Lee. (2019). A network analysis on early childhood personality education: Based on big data. The Journal of Korea Open Association for Early Childhood Education, 24(4), 171-197. DOI : 10.20437/KOAECE24-4-08
  15. S. S. Lee. (2013). Network analysis methods. Seoul : Nonhyung.
  16. N. R. Yousefi, J. E. M. Sale, A. Marin & L. E. Ross. (2020). Social network analysis : An example of fusion between quantitative and qualitative methods. Journal of Mixed Methods Research, 14(1), 110-124. DOI : 10.1177/1558689818804060
  17. S. P. Borgatti, M. G. Everett & J. C. Johnson. (2013). Analyzing social networks. Thousand Oaks : Sage Publications. p. 296.
  18. B. M. Kim & K. H. Lee. (2020). Keyword network analysis on the integrated research trends of early childhood education and childcare. International Journal of Innovation, Creativity and Change, 13(3), 595-607.
  19. B. M. Kim, J. J. Youn, S. J. Jeong & K. H. Lee. (2018). Keyword network analysis for creativity and personality of early childhood teachers : Focus on big data. Indian Journal of Public Health Research & Development, 9(11), 850-856. DOI : 10.5958/0976-5506.2018.01566.8
  20. K. H. Lee. (2019). An exploration of a direction to promote early childhood playfulness based on big data. Journal of Educational Innovation Research, 29(3), 257-289. DOI : 10.21024/pnuedi.29.3.201909.257
  21. H. I. Hwang & K. H. Lee. (2017). A network analysis of early childhood teachers' happiness based on big data. International Journal of Korea Open Association for Early Childhood Education, 3, 73-90.