DOI QR코드

DOI QR Code

상압플라즈마 공정을 이용한 Ti 증착 연구

Ti Deposition using Atmospheric Pressure Plasma Technology

  • 김경보 (인하공업전문대학 금속재료과)
  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
  • 투고 : 2021.12.26
  • 심사 : 2022.02.20
  • 발행 : 2022.02.28

초록

본 논문에서는 광센서의 주요 구성요소인 도체를 상압플라즈마 공정 기술을 이용하여 티타늄(Ti: Titanium) 박막을 형성하고자 하였다. 이를 위해 기존의 상압플라즈마 장비를 개조하였으며, CF4 가스를 이용하여 sputter용 4인치 크기의 Ti 타겟을 식각하여 그 부산물이 글라스 소재의 샘플에 코팅되는 방법을 이용하였다. 이러한 부산물이 약 2cm까지 형성되었으며, 색깔에 따라 총 15영역으로 구분할 수 있었다. SEM(Scanning Electron Microscopy) 및 EDS(Energy Dispersive Spectrometer), 4-point probe 장비를 이용하여 표면 형상 및 구성 원소를 분석하였으며, 또한, 전기적인 특성을 측정하였다. 증착률 및 Ti 비율을 고려한다면, 타겟에서 약 4.5mm에서 5mm 정도에 샘플을 위치시켜 코팅하면 전체적으로 균일한 박막이 형성되지만, 이 박막에 상당량의 플루오린이 함유되어 있어 박막의 전기적인 특성에 큰 영향을 미치는 것을 알 수 있었다. 따라서 플루오린을 제거하거나 증착시 최소화하는 방안에 대해 추가 실험 및 연구를 진행해야 할 것이다.

In this paper, it was attempted to form a titanium (Ti: Titanium) thin film using the atmospheric pressure plasma process technology for the conductor, which is the main component of the optical sensor. The atmospheric plasma equipment was remodeled. A 4-inch Ti target for sputter was etched using CF4 gas, and the by-product was coated on a glass sample. These by-products were formed up to about 2 cm, and could be divided into 15 areas according to color. Surface shape and constituent elements were analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Electrical properties using 4-point probe equipment were also measured. If the process is performed by positioning the sample at about 4.5 mm to 5 mm from the target, a uniform Ti thin film will be deposited. However, it was found that the thin film contained a significant amount of fluorine, which greatly affects the electrical properties of the thin film. Therefore, additional experiments and studies should be performed to remove or minimize fluorine during deposition.

키워드

과제정보

This work was supported by INHA TECHNICAL COLLEGE Research Grant in 2021.

참고문헌

  1. J.-I. Lee, S. Lee, H.-M. Oh, B. R. Cho, K.-H. Seo & M. Y. Kim (2020). 3D Contact Position Estimation of Image-Based Areal Soft Tactile Sensor with Printed Array Markers and Image Sensors. Sensors, 20(13), 3796. DOI : 10.3390/s20133796
  2. A. Inoue, T. Okino, S. Koyama & Y. Hirose (2020). Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor. Sensors, 20(10), 3007. DOI : 10.3390/s20103007
  3. M. Roslina & M. R. Mokhtar (2020). Self-referencing optical intensity sensor based on radio-frequency spectrum interrogation. Optical Fiber Technology, 53, 102009. DOI : 10.1016/j.yofte.2019.102009
  4. K. B. Kim, J. P. Lee & M. J. Kim (2020). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028
  5. Z. Krstic & V. D. Krstic (2012). Silicon nitride: the engineering material of the future, Journal of Materials Science, 47, 535-552. DOI : 10.1007/s10853-011-5942-5
  6. M. D. Groner, F. H. Fabreguette, J. W. Elam & S. M. George (2004). Low-Temperature Al2O3 Atomic Layer Deposition. Chemistry of Materials, 16(4), 639-645. DOI : 10.1021/cm0304546
  7. O. A. Dicks, J. Cottom, A. L. Shluger & V. V. Afanas'ev (2019). The origin of negative charging in amorphous Al2O3 films: the role of native defects. Nanotechnology, 30(20), 205201. DOI : 10.1088/1361-6528/ab0450
  8. D. Arl, V. Roge, N. Adjeroud, B. R. Pistillo, M. Sarr, N. Bahlawane & D. Lenoble (2020). SiO2 thin film growth through a pure atomic layer deposition technique at room temperature. RSC Advances, 10(31), 18073-18081. DOI : 10.1039/D0RA01602K
  9. H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3Pb3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002
  10. H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen-plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019
  11. H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022
  12. M. J. Kim (2021). Atmospheric pressure plasma etching technology for forming circular holes in perovskite semiconductor materials. Journal of Convergence for Information Technology, 11(2), 10-15. DOI : 10.22156/CS4SMB.2021.11.02.010
  13. H. Khachatryan, S.-N. Lee, K.-B. Kim & M. J. Kim (2019). Deposition of Al Thin Film on Steel Substrate: The Role of Thickness on Crystallization and Grain Growth. Metals, 9(12), 1-8. DOI : 10.3390/met9010012
  14. H. Khachatryan, S.-N. Lee, K.-B. Kim, H.-K. Kim & M. J. Kim (2018). Al thin film: The effect of substrate type on Al film formation and morphology. Journal of Physics and Chemistry of Solids, 122, 109-117. DOI : 10.1016/j.jpcs.2018.06.018
  15. K. B. Kim, J. P. Lee & M. J. Kim (2021). Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel. Journal of Convergence for Information Technology, 11(3), 167-173. DOI : 10.22156/CS4SMB.2021.11.03.167