DOI QR코드

DOI QR Code

Detection Performance Analysis of Underwater Vehicles by Long-Range Underwater Acoustic Communication Signals

장거리 수중 음향 통신 신호에 의한 수중 운동체 피탐지 성능 분석

  • Received : 2022.10.17
  • Accepted : 2022.11.26
  • Published : 2022.12.31

Abstract

Unlike a short-range, a long-range underwater acoustic communication(UWAC) uses low frequency signal and deep sound channel to minimize propagation loss. In this case, even though communication signals are modulated using a covert transmission technique such as spread spectrum, it is hard to conceal the existence of the signals. The unconcealed communication signal can be utilized as active sonar signal by enemy and presence of underwater vehicles may be exposed to the interceptor. Since it is very important to maintain stealthiness for underwater vehicles, the detection probability of friendly underwater vehicles should be considered when interceptor utilizes our long-range UWAC signal. In this paper, we modeled a long-range UWAC environment for analyzing the detection performance of underwater vehicles and proposed the region of interest(ROI) setup method and the measurement of detection performance. By computer simulations, we yielded parameters, analyzed the detection probability and the detection performance in ROI. The analysis results showed that the proposed detection performance analysis method for underwater vehicles could play an important role in the operation of long-range UWAC equipment.

단거리와 달리 장거리 수중 음향 통신에서는 전파 손실을 최소화하기 위해 저주파 신호와 심해 음파 채널을 사용한다. 이 경우 대역 확산과 같은 은밀 통신 기법을 이용하더라도 통신 사실을 숨기기 어려우며, 통신 신호가 탐지 신호처럼 작용하므로 감청기에 수중 운동체의 존재가 노출될 수 있다. 수중 운동체의 경우 은밀성 유지가 매우 중요하므로, 감청기가 통신 신호를 이용하여 아군 수중 운동체를 탐지할 가능성을 반드시 고려해야 한다. 본 논문에서는 수중 운동체의 피탐지 성능 분석을 위한 장거리 수중 음향 통신 환경을 모델링하고, 피탐지 성능 분석을 위한 관심영역 설정 방법과 평가 척도를 제안하였다. 전산 모의 실험을 통해 파라미터를 산출하고, 관심영역에서 피탐지 확률 분석 및 피탐지 성능 분석을 수행하였다. 분석 결과는 제안된 수중 운동체의 피탐지 성능 분석 방법이 장거리 수중 통신 장비의 운용에 있어 중요한 역할을 할 수 있음을 보였다.

Keywords

Acknowledgement

이 논문은 2019년 정부의 재원으로 수행된 연구 결과임

References

  1. A.D. Waite, SONAR for Practising Engineers, 3rd Ed., John Wiley & Sons, Ltd, 2002.
  2. Cho, Hyunjin et al. (2019), "Research on an Engagement Level Underwater Weapon System Model with Neyman-Pearson Detector", Journal of the Korea Society for Simulation, 28(2), 89-95.
  3. Cho, Hyunjin and Kim, Wan-Jin (2021) "Research on Experimentation Methodology for Analysing Parameter Sensitivity of Hard-Kill Torpedo Defence System in Engagement Stage", Journal of the Korea Society for Simulation, 30(1), 21-29.
  4. G. S. Spagnolo, L. Cozzella, F. Leccese (2020), "A Brief Survey on Underwater Optical Wireless Communications", 2020 IMEKO TC-19 International Workshop on Metrology for the Sea Naples, Italy.
  5. H. Cox, "Fundamentals of Bistatic Sonar. In : Underwater Acoustic Data Processing", Springer, 1988.
  6. J. Fakatselis, and M. Belkerdid, "Processing Gain for Direct Sequence Spread Spectrum Communication Systems and PRISM TM", Harris Semiconductor application note, No. AN9633, August 1996.
  7. J. G. Proakis, Digital Communications, 4th Ed., McGraw-Hill Companies Inc., 2001.
  8. Ji, Yoon Hee et al. (2014) "Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification," Journal of Ocean Engineering and Technology, 28(5), 440-451. https://doi.org/10.5574/KSOE.2014.28.5.440
  9. M. B. Porter, The BELLHOP manual and user's guide : PRELIMINARY DRAFT, Heat, Light and Sound Research, Inc., 2010.
  10. M. F. Ali, et al. (2019) "Recent Advances and Future Directions on Underwater Wireless Communications", Archives of Computational Methods in Engineering.
  11. T.C. Yang, and W. B. Yang, (2008) "Low Probability of Detection Underwater Acoustic Communications for Mobile Platforms" 2008 IEEE Oceans, Quebec, Canada.
  12. R. Diament et al. (2017) "Bounds for Low Probability of Detection for Underwater Acoustic Communication" Journal of IEEE Ocean Engineering, 42(1), 143-155.
  13. R. Diament, and L. Lampe (2018) "Low Probability of Detection for Underwater Acoustic Communication: A Review," IEEE Access, vol.6, 19099-19112. https://doi.org/10.1109/access.2018.2818110
  14. R. J. Urick, "Principles of underwater sound 3rd", MacGraw-Hill, 1983.
  15. R. P. Hodges, "Underwater acoustics : analysis, design, and performance of sonar", Jonh Wiley & Sons, Ltd, 2010.
  16. Son, Su-Uk et al. (2022) "Assessment of acoustic detection performance for a deployment of bi-static sonar"(in Korean), The Journal of the Acoustical Society of Korea, 41(4), 419-425.
  17. Young-Cheol Jung, et al. (2014) "Development of range-dependent ray model for sonar simulator"(in Korean), The Journal of the Acoustical Society of Korea, 33(3), 163-173.  https://doi.org/10.7776/ASK.2014.33.3.163