References
- H. W. Byun, J. Y. Son. (2020). Prevention of Insurance Fraud Utilizing Data Analysis. KIRI Report (2020.11.23.), 1-7.
- Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113. https://doi.org/10.1016/j.jnca.2016.04.007
- M. J. Lee, G. Y. Gim. (2007). An Empirical Study on the Development of Behavior Model of Insurance Fraud. Journal of Information Technology Services, 6(2), 1-18.
- Roy, R., & George, K. T. (2017). Detecting insurance claims fraud using machine learning techniques. Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017.
- Sithic, H. L., & Balasubramanian, T. (2013). Survey of Insurance Fraud Detection Using Data Mining Techniques. International Journal of Innovative Technology and Exploring Engineering, 2(3), 62-65.
- Wen, C.-H., Wang, M.-J., & Lan, L. W. (2005). Discrete choice modeling for bundled automobile insurance policies. Journal of the Eastern Asia Society for Transportation Studies, 6. 1914-1928.
- Artis, M., Ayuso, M., & Guillen, M. (2002). Detection of Automobile Insurance Fraud With Discrete Choice Models and Misclassified Claims. The Journal of Risk and Insurance, 69(3), 325-340. https://doi.org/10.1111/1539-6975.00022
- H. G. Jo. (1990). The Cause of Insurance Fraud And Countermeasures. Korean Journal of Insurance, 35, 75-102
- H. G. Jo. (2001). Countermeasures of Insurance Fraud For Nation. Journal of Insurance Studies, 12(2).
- T. K. Sung. (2003). Detection of Insurance Fraud using Visualization Data Mining Tool. Information System Review, 5(1), 49-60.
- C. Y. Kim. (1996). Case Study of the Type of Car Insurance Frauds, General Insurance Association of Korea, 328, 43-61.
- Y. J. Kim. (1998). Case Study of Car Insurance for Moral Hazard, General Insurance, 359, 60-71.
- G. Y. Gim. (1996). Developing Early Detecting Insurance Fraud System: Fuzzy Theory and AHP, Insurance Development Studies, 18, 4-28.
- H. S. Kim. (1999). Brief Study of The Development of Automobile insurance Fraud Early-Warning model, General Insurance, 363, 68-80.
- H. S. Kim. (2000). A Study on The Development of Automobile insurance Fraud Early-Warning model using Claim Adjusters' Expert knowledge. The Journal of Risk management, 16, 59-97.
- J. D. Kim, J. S. Park. (2006). A Fraud Detection Model for Automobile Insurance Claims. Risk Management. 17(1), 109-152.
- T. H. Kim, J. I. Lim. (2020). A Study on Conspired Insurance Fraud Detection Modeling Using Social Network Analysis, Journal of the Korea Society of Computer and Information, 25(3), 117-127. https://doi.org/10.9708/JKSCI.2020.25.03.117
- Martino Scheepens. (retrieved on 11.30.2021). Coronavirus, what have you done?. FRISS. https://www.friss.com/blog/coronavirus-what-have-you-done/
- Matthew J. Smith. (retrieved on 11.30.2021). Insurance Fraud Report (2020). https://knowledge.friss.com/hubfs/Ebooks/Insurance%20Fraud%20Report%202020-2021%20EN.pdf?utm_campaign=Fraud%20Survey&utm_medium=email&_hsmi=98996085&_hsenc=p2ANqtz-9b05tppFd4OvW5Pgn40Us4ktpp0dXzleaTZb8IQV2-j9muWaPkF6WLs3jg2XUdudg0gUyFbZtE6ldFqd8yLfN59MVHA&utm_content=98996085&utm_source=hs_automation
- Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863-905. https://doi.org/10.1613/jair.1.11192
- Brennan, P. (2012). A comprehensive survey of methods for overcoming the class imbalance problem in fraud detection. Thesis, (June), 1-107.
- Subelj, L., Furlan, S., & Bajec, M. (2011). An expert system for detecting automobile insurance fraud using social network analysis. Expert Systems with Applications, 38(1), 1039-1052. https://doi.org/10.1016/j.eswa.2010.07.143
- Fiorentini, N., & Losa, M. (2020). Handling Imbalanced Data in Road Crash Severity Prediction by Machine Learning Algorithms. Infrastructures, 5(7).
- Chen, C., Liaw, A., & Breiman, L. (2004). Using Random Forest to Learn Imbalanced Data. In Department of Statistics, UC berkeley.
- Ai, J., Golden, L. L., & Brockett, P. L. (2009). Assessing Consumer Fraud Risk in Insurance Claims. North American Actuarial Journal, 13(4), 438-458. https://doi.org/10.1080/10920277.2009.10597568
- Brockett, P. L., Derrig, R. a, Golden, L. L., & Alpert, M. (2002). Fraud Classification Using Principal Component Analysis of RIDITs. The Journal of Risk and Insurance, 69(3), 341-371. https://doi.org/10.1111/1539-6975.00027
- Viaene, S., Ayuso, M., Guillen, M., Van Gheel, D., & Dedene, G. (2007). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565-583. https://doi.org/10.1016/j.ejor.2005.08.005
- Agjee, N. H., Mutanga, O., Peerbhay, K., & Ismail, R. (2018). The impact of simulated spectral noise on random forest and oblique random forest classification performance. Journal of Spectroscopy. 2018.8