DOI QR코드

DOI QR Code

Tabu Search를 이용한 지름이 2인 그래프에 대한 L(2,1)-coloring 문제 해결

Using Tabu Search for L(2,1)-coloring Problem of Graphs with Diameter 2

  • 김소정 (공주대학교 응용수학과) ;
  • 김찬수 (공주대학교 응용수학과) ;
  • 한근희 (공주대학교 응용수학과)
  • Kim, SoJeong (Department of Applied Mathematics, Kongju National University) ;
  • Kim, ChanSoo (Department of Applied Mathematics, Kongju National University) ;
  • Han, KeunHee (Department of Applied Mathematics, Kongju National University)
  • 투고 : 2021.11.22
  • 심사 : 2022.02.20
  • 발행 : 2022.02.28

초록

단순 무방향 그래프 G 의 L(2,1)-coloring은 d(u,v)가 두 정점 사이의 거리일 때 두 가지 조건 (1) d(x,y) = 1 라면 |f(x)-f(y)|≥ 2, (2) d(x,y) = 2 라면 |f(x)-f(y)|≥ 1 을 만족하는 함수 f : V → [0,1,…,k]를 정의하는 것이다. 임의의 L(2,1)-coloring c 에 대하여 G 의 c-span 은 λ(c)=max{|c(u)-c(v)|| u,v∈V} 이며, L(2,1)-coloring number 인 λ(G)는 모든 가능한 c 에 대하여 λ(G) = min{λ(c)} 로 정의된다. 본 논문에서는 Harary의 정리에 기반하여 지름이 2인 그래프에 대하여 여그래프에 해밀턴 경로의 존재여부를 Tabu Search를 사용해 판단하고 이를 통해 λ(G)가 n(=|V|)과 같음을 분석한다.

For simple undirected graph G=(V,E), L(2,1)-coloring of G is a nonnegative real-valued function f : V → [0,1,…,k] such that whenever vertices x and y are adjacent in G then |f(x)-f(y)|≥ 2 and whenever the distance between x and y is 2, |f(x)-f(y)|≥ 1. For a given L(2,1)-coloring c of graph G, the c-span is λ(c) = max{|c(v)-c(v)||u,v∈V}. L(2,1)-coloring number λ(G) = min{λ(c)} where the minimum is taken over all L(2,1)-coloring c of graph G. In this paper, based on Harary's Theorem, we use Tabu Search to figure out the existence of Hamiltonian Path in a complementary graph and confirmed that if λ(G) is equal to n(=|V|).

키워드

참고문헌

  1. J. R. Griggs, & R. K. Yeh. (1992). Labelling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics, 5(4). 586-595. https://doi.org/10.1137/0405048
  2. F. Harary, & M. Plantholt. (1999). Graphs Whose Radio Coloring Number Equals the Number. Graph Colouring and Applications, 23(23). 99.
  3. K. I. Aardal, S. P. M. Van Hoesel, A. M. Koster, C. Mannino & A. Sassano. (2007). Models and solution techniques for frequency assignment problems. Annals of Operations Research, 153(1). 79-129. https://doi.org/10.1007/s10479-007-0178-0
  4. L. Liwei & F. Rongshuang. (2010, August). Simulated annealing algorithm in solving frequency assignment problem. In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) (Vol. 1, pp. V1-361). IEEE.
  5. V. Maniezzo & A. Carbonaro. (2000). An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8). 927-935. https://doi.org/10.1016/S0167-739X(00)00046-7
  6. T. Park & C. Y. Lee. (1996). Application of the graph coloring algorithm to the frequency assignment problem. Journal of the Operations Research society of Japan, 39(2). 258-265. https://doi.org/10.15807/jorsj.39.258
  7. M. Alabau, L. Idoumghar & R. Schott. (2002). New hybrid genetic algorithms for the frequency assignment problem. IEEE Transactions on Broadcasting, 48(1). 27-34. https://doi.org/10.1109/11.992851
  8. J. K. Hao & R. Dorne. (1995, September). Study of genetic search for the frequency assignment problem. In European Conference on Artificial Evolution. (pp. 333-344). Berlin:Springer
  9. S. Vollala, S. Indrajeet, A. D. Joshi, P. S. Tamizharasan & J. Jose. (2017, July). Implementation of algorithms for L (2, 1)-coloring problems. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
  10. S. Paul, M. Pal & A. Pal. (2015). L(2, 1)-labeling of interval graphs. Journal of Applied Mathematics and Computing, 49(1). 419-432. https://doi.org/10.1007/s12190-014-0846-6
  11. M. R. Cerioli & D. F. Posner. (2012). On L(2, 1)-coloring split, chordal bipartite, and weakly chordal graphs. Discrete Applied Mathematics, 160(18). 2655-2661. https://doi.org/10.1016/j.dam.2012.03.018
  12. G. J. Chang & D. Kuo. (1996). The L(2,1)-labeling problem on graphs. SIAM Journal on Discrete Mathematics, 9(2). 309-316. https://doi.org/10.1137/S0895480193245339
  13. F. W. Glover & M. Laguna. (1998). Tabu Search. Springer Science & Business Media.
  14. E. K. Burke, E. K. Burke, G. Kendall & G. Kendall. (2014). Search methodologies: introductory tutorials in optimization and decision support techniques. Springer.
  15. F. Glover (1977) Heuristics for Integer programming using surrogate constraints, Decision Sciences, 8(1). 156-166 https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
  16. K. I. Aardal, A. Hipolito, C. P. M. Van Hoesel, B. Jansen, C. Roos & T. Terlaky. (1996). A branch-and-cut algorithm for the frequency assignment problem. Research Memorandum, 96(011). 3-7.
  17. H. L. Bodlaender, T. Kloks, R. B. Tan & J. Van Leeuwen (2004). Approximations for λ-colorings of graphs. The Computer Journal, 47(2). 193-204. https://doi.org/10.1093/comjnl/47.2.193
  18. D. H. Smith, S. Hurley & S. U. Thiel (1998). Improving heuristics for the frequency assignment problem. European Journal of Operational Research, 107(1). 76-86. https://doi.org/10.1016/S0377-2217(98)80006-4
  19. W. K. Hale. (1980). Frequency assignment: Theory and applications. Proceedings of the IEEE, 68(12). 1497-1514. https://doi.org/10.1109/PROC.1980.11899