DOI QR코드

DOI QR Code

온라인 데이터 스트림에서의 동적 부분 공간 클러스터링 기법

Dynamic Subspace Clustering for Online Data Streams

  • 박남훈 (안양대학교 융합소프트웨어학과)
  • Park, Nam Hun (Dept. of Convergence Software, Anyang University)
  • 투고 : 2021.11.16
  • 심사 : 2022.02.20
  • 발행 : 2022.02.28

초록

온라인 데이터 스트림에 대한 부분 공간 클러스터링은 데이터 공간 차원의 모든 부분 집합을 검사해야 하므로 많은 양의 메모리 자원을 필요로 한다. 유한한 메모리 공간에서 데이터 스트림에 대한 클러스터들의 지속적인 변화를 추적하기 위해 본 논문에서는 메모리 자원을 효과적으로 사용하는 격자기반 부분 공간 클러스터링 알고리즘을 제안한다. n차원 데이터 스트림이 주어지면 각 차원 데이터 공간에 있는 데이터 항목의 분포 정보를 격자셀 리스트에 의해 모니터링 된다. 첫번째 레벨의 격자셀 목록에서 데이터 항목의 빈도가 높아 단위 격자셀이 되면 해당 격자셀로부터 모든 가능한 부분 공간의 클러스터를 찾기 위해 다음 레벨의 격자셀 리스트를 자식 노드로 생성한다. 이와 같이 최대 다차원 n레벨의 격자셀 부분 공간 트리가 구성되고, k차원의 부분 공간 클러스터는 부분 공간 격자셀 트리의 k레벨에서 찾을 수 있다. 실험을 통해서 제안하는 방법이 기존 방법만큼 정확도를 유지하면서, 밀집 공간만 확장하여 컴퓨팅 자원을 보다 효율적으로 사용하는 것을 확인하였다.

Subspace clustering for online data streams requires a large amount of memory resources as all subsets of data dimensions must be examined. In order to track the continuous change of clusters for a data stream in a finite memory space, in this paper, we propose a grid-based subspace clustering algorithm that effectively uses memory resources. Given an n-dimensional data stream, the distribution information of data items in data space is monitored by a grid-cell list. When the frequency of data items in the grid-cell list of the first level is high and it becomes a unit grid-cell, the grid-cell list of the next level is created as a child node in order to find clusters of all possible subspaces from the grid-cell. In this way, a maximum n-level grid-cell subspace tree is constructed, and a k-dimensional subspace cluster can be found at the kth level of the subspace grid-cell tree. Through experiments, it was confirmed that the proposed method uses computing resources more efficiently by expanding only the dense space while maintaining the same accuracy as the existing method.

키워드

과제정보

This paper was supported by Anyang University Research Grant.

참고문헌

  1. M. Garofalakis, J. Gehrke & R. Rastogi. (2002) Querying and mining data streams: you only get one look. In the tutorial notes of the 28th Int'l Conference on Very Large Databases, Hong Kong. DOI:10.1145/564691.564794
  2. Joong Hyuk Chang & Won Suk Lee. (2006). Finding frequent itemsets over online data streams. Information & Software Technology, 48(7), 606-618. DOI: 10.1016/j.infsof.2005.06.004
  3. Mohamed Medhat Gaber, Arkady B. Zaslavsky & Shonali Krishnaswamy. (2005). Mining data streams: a review. SIGMOD Record 34(2), 18-26. DOI: 10.1145/1083784.1083789
  4. Ming Hua, Jian Pei & Xuemin Lin. (2011). Ranking queries on uncertain data. The International Journal on Very Large Data Bases, 20(1), 129-153. DOI: 10.1007/s00778-010-0196-4
  5. Jie Zhao, Xiaowen Li & Peiquan Jin. (2012). A Time-Enhanced Topic Clustering Approach for News Web Search. Int. Journal of Database Theory and Application, 5(4), 1-10.
  6. Chun-Hung Cheng, Ada Waichee Fu & Yi Zhang. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge discovery and data mining, 84-93. DOI: 10.1145/312129.312199
  7. Tang MingJing, Li Tong, Zhu Rui & Ma ZiFei. (2021). A Cluster Analysis Method of Software Development Activities Based on Event Log. Recent Advances in Computer Science and Communications, 14(6). 1843-1851. DOI: 10.2174/2666255813666191204144931
  8. Hans-Peter Kriegel, Peer Kroger, Matthias Renz & Sebastian Wurst. (2006). Generic Framework for Efficient Subspace Clustering of High-Dimensional Data. In Proceedings of the Fifth IEEE International Conference on Data Mining, 250-257. DOI: 10.1109/ICDM.2005.5
  9. Nam Hun Park & Won Suk Lee. (2007). Cell trees: An Adaptive Synopsis structure for clustering multi-dimensional on-line data streams. J. Data & Knowledge Engineering, 63(2), 528-549. DOI: 10.1016/j.datak.2007.04.003
  10. O'callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data algorithms for high-quality clustering. In Proceedings 18th International Conference on Data Engineering, 685-694. DOI: 10.5555/876875.878995
  11. Charu C. Aggarwal, Jiawei Han, Jianyong Wang & Philip S. Yu. (2003). A Framework for Clustering Evolving Data Streams. In Proc. VLDB 29th.. DOI: 10.1016/B978-012722442-8/5 0016-1
  12. Mohamed Medhat Gaber. (2011). Advances in data stream mining. Data Mining and Knowledge Discovery, 2(1). DOI: 10.1002/widm.52
  13. Eoin Martino Grua, Mark Hoogendoorn, Ivano Malavolta, Patricia Lago & A.E. Eiben. (2019). CluStreamGT Online Clustering for Personali -zation in the Health Domain. IEEE/WIC/ ACM International Conference on Web Intelligence.
  14. Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos & Prabhakar Raghavan. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, 94-105. DOI: 10.1145/276305.276314
  15. Mohammed Oualid Attaoui, Hanene Azzag, Mustapha Lebbah & Nabil Keskes. (2020). Subspace data stream clustering with global and local weighting models, Neural Computing and Applications, 33, 3691-3712. DOI: 10.1007/s00521-020-05184-z