과제정보
This paper was supported by Anyang University Research Grant.
참고문헌
- M. Garofalakis, J. Gehrke & R. Rastogi. (2002) Querying and mining data streams: you only get one look. In the tutorial notes of the 28th Int'l Conference on Very Large Databases, Hong Kong. DOI:10.1145/564691.564794
- Joong Hyuk Chang & Won Suk Lee. (2006). Finding frequent itemsets over online data streams. Information & Software Technology, 48(7), 606-618. DOI: 10.1016/j.infsof.2005.06.004
- Mohamed Medhat Gaber, Arkady B. Zaslavsky & Shonali Krishnaswamy. (2005). Mining data streams: a review. SIGMOD Record 34(2), 18-26. DOI: 10.1145/1083784.1083789
- Ming Hua, Jian Pei & Xuemin Lin. (2011). Ranking queries on uncertain data. The International Journal on Very Large Data Bases, 20(1), 129-153. DOI: 10.1007/s00778-010-0196-4
- Jie Zhao, Xiaowen Li & Peiquan Jin. (2012). A Time-Enhanced Topic Clustering Approach for News Web Search. Int. Journal of Database Theory and Application, 5(4), 1-10.
- Chun-Hung Cheng, Ada Waichee Fu & Yi Zhang. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge discovery and data mining, 84-93. DOI: 10.1145/312129.312199
- Tang MingJing, Li Tong, Zhu Rui & Ma ZiFei. (2021). A Cluster Analysis Method of Software Development Activities Based on Event Log. Recent Advances in Computer Science and Communications, 14(6). 1843-1851. DOI: 10.2174/2666255813666191204144931
- Hans-Peter Kriegel, Peer Kroger, Matthias Renz & Sebastian Wurst. (2006). Generic Framework for Efficient Subspace Clustering of High-Dimensional Data. In Proceedings of the Fifth IEEE International Conference on Data Mining, 250-257. DOI: 10.1109/ICDM.2005.5
- Nam Hun Park & Won Suk Lee. (2007). Cell trees: An Adaptive Synopsis structure for clustering multi-dimensional on-line data streams. J. Data & Knowledge Engineering, 63(2), 528-549. DOI: 10.1016/j.datak.2007.04.003
- O'callaghan, L., Mishra, N., Meyerson, A., Guha, S., & Motwani, R. (2002). Streaming-data algorithms for high-quality clustering. In Proceedings 18th International Conference on Data Engineering, 685-694. DOI: 10.5555/876875.878995
- Charu C. Aggarwal, Jiawei Han, Jianyong Wang & Philip S. Yu. (2003). A Framework for Clustering Evolving Data Streams. In Proc. VLDB 29th.. DOI: 10.1016/B978-012722442-8/5 0016-1
- Mohamed Medhat Gaber. (2011). Advances in data stream mining. Data Mining and Knowledge Discovery, 2(1). DOI: 10.1002/widm.52
- Eoin Martino Grua, Mark Hoogendoorn, Ivano Malavolta, Patricia Lago & A.E. Eiben. (2019). CluStreamGT Online Clustering for Personali -zation in the Health Domain. IEEE/WIC/ ACM International Conference on Web Intelligence.
- Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos & Prabhakar Raghavan. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, 94-105. DOI: 10.1145/276305.276314
- Mohammed Oualid Attaoui, Hanene Azzag, Mustapha Lebbah & Nabil Keskes. (2020). Subspace data stream clustering with global and local weighting models, Neural Computing and Applications, 33, 3691-3712. DOI: 10.1007/s00521-020-05184-z