DOI QR코드

DOI QR Code

Prioritizing the target watersheds for permeable pavement to reduce flood damage in urban watersheds considering future climate scenarios

미래 기후 시나리오를 고려한 도시 유역 홍수 피해 저감을 위한 투수성 포장 시설 대상 유역 우선순위 선정

  • Chae, Seung Taek (Department Civil Engineering, Seoul National University of Science and Technology) ;
  • Song, Young Hoon (Department Civil Engineering, Seoul National University of Science and Technology) ;
  • Lee, Joowon (Department Civil Engineering, Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Department Civil Engineering, Seoul National University of Science and Technology)
  • 채승택 (서울과학기술대학교 건설시스템공학과) ;
  • 송영훈 (서울과학기술대학교 건설시스템공학과) ;
  • 이주원 (서울과학기술대학교 건설시스템공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템공학과)
  • Received : 2021.12.02
  • Accepted : 2022.01.05
  • Published : 2022.02.28

Abstract

As the severity of water-related disasters increases in urban watersheds due to climate change, reducing flood damage in urban watersheds is one of the important issues. This study focuses on prioritizing the optimal site for permeable pavement to maximize the efficiency of reducing flood damage in urban watersheds in the future climate environment using multi-criteria decision making techniques. The Mokgamcheon watershed which is considerably urbanized than in the past was selected for the study area and its 27 sub-watersheds were considered as candidate sites. Six General Circulation Model (GCM) of Coupled Model Intercomparison Project 6(CMIP6) according to two Shared Socioeconomic Pathway (SSP) scenarios were used to estimate future monthly precipitation for the study area. The Driving force-Pressure-State-Impact-Response (DPSIR) framework was used to select the water quantity evaluation criteria for prioritizing permeable pavement, and the study area was modeled using ArcGIS and Storm Water Management Model (SWMM). For the values corresponding to the evaluation criteria based on the DPSIR framework, data from national statistics and long-term runoff simulation value of SWMM according to future monthly precipitation were used. Finally, the priority for permeable pavement was determined using the Fuzzy TOPSIS and Minimax regret method. The high priorities were concentrated in the downstream sub-watersheds where urbanization was more progressed and densely populated than the upstream watersheds.

기후변화로 인한 도시유역의 물 관련 재해의 심각성이 증가함에 따라 미래 기후 환경에서 도시 유역의 홍수피해를 줄이는 것은 중요한 문제 중 하나이다. 본 연구는 다기준의사결정기법을 이용하여 미래 기후 환경에서 도시 유역의 홍수 피해 저감 효율을 극대화하기 위해 투수성 포장 시설을 설치하기 위한 지역의 우선순위를 선정한다. 과거에 비해 도시화가 많이 진행된 목감천 유역을 대상유역으로 선정하였으며, 목감천 유역의 27개 소유역을 투수성 포장 시설의 설치 가능지역으로 하였다. 2개의 Shared Socioeconomic Pathway (SSP) 시나리오에 따른 Coupled Model Intercomparison Project 6(CMIP6)의 6개 전지구모형(General Circulation Model, GCM)을 사용하여 연구대상지의 미래 월 강수 자료를 추정했다. 투수성 포장의 우선순위를 결정하기 위한 수량 평가 기준은 Driving force-Pressure-State-Impact-Response (DPSIR) 체계를 토대로 선정하였으며, 평가 기준별 투수성 포장 시설의 평가값은 국가통계자료와 Storm Water Management Model의 모의 값을 사용했다. 최종적으로 Fuzzy TOPSIS 및 Minimax regret 방법을 사용하여 투수성 시설을 설치하기 위한 지역의 우선순위를 선정했다. 결국 우선순위가 높은 지역은 목감천 유역의 상류 유역에 비해 도시화가 많이 진행되었고 인구밀도가 높은 하류유역에 집중되었다.

Keywords

Acknowledgement

본 연구는 서울과학기술대학교 교내연구비 지원에 의해 수행되었습니다.

References

  1. Cannon, A.J., Sobie, S.R., and Murdock, T.Q. (2015). "Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?." Journal of Climate, Vol. 28, pp. 6938-6959. https://doi.org/10.1175/JCLI-D-14-00754.1
  2. Chen, C.T. (2000). "Extensions of the TOPSIS for group decisionmaking under fuzzy environment." Fuzzy Sets and Systems, Vol. 114, pp. 1-9. https://doi.org/10.1016/S0165-0114(97)00377-1
  3. Chung, E.S., and Kim, Y.J. (2014). "Development of fuzzy multicriteria approach to prioritize locations of treated wastewater use considering climate change scenarios." Journal of Environmental Management, Vol. 146, pp. 505-516. https://doi.org/10.1016/j.jenvman.2014.08.013
  4. Chung, E.S., and Lee, K.S. (2009). "Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques." Journal of Environmental Management, Vol. 90, pp. 1502-1511. https://doi.org/10.1016/j.jenvman.2008.10.008
  5. Chung, E.S., Park, K., and Lee, K.S. (2011). "The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed." Hydrolysis Process, Vol. 25, No. 4, pp. 544-560. https://doi.org/10.1002/hyp.7781
  6. Foomani, M.S., and Malekmohammadi, B. (2020). "Site selection of sustainable urban drainage systems using fuzzy logic and multicriteria decision-making." Water and Environment Journal, Vol. 34, No. 5, pp. 584-599. https://doi.org/10.1111/wej.12487
  7. Hashino, T., Bradley, A.A., and Schwartz, S.S. (2007). "Valuation of bias-correction methods for ensemble streamflow volume forecasts." Hydrology and Earth System Sciences, Vol. 11, pp. 939-950. https://doi.org/10.5194/hess-11-939-2007
  8. Hong, J.Y., and Ahn, J.B. (2015). "Changes of early summer precipitation in the Korean peninsula and nearby regions based on RCP simulations." Journal of Climate, Vol. 28, No. 9, pp. 3557-3578. https://doi.org/10.1175/JCLI-D-14-00504.1
  9. Hou, J., Zhu, M., Wang, Y., and Sun, S. (2020). "Optimal spatial priority scheme of urban LID-BMPs under different investment periods." Landscape and Urban Planning, Vol. 202, 103858. https://doi.org/10.1016/j.landurbplan.2020.103858
  10. Hwang, C.L., and Yoon, K. (1981). "Multiple attribute decision making an introduction, Sage Publications." Thousand Oaks London New Delhi, Vol. 104, pp. 38-45.
  11. Intergovernmental Panel on Climate Change (IPCC). (2021). AR6 climate change 2021: The physical science basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  12. Ionita, M., and Nagavciuc, V. (2021). "Change in drought features at European level over the last 120 years." Natural Hazards and Earth System Sciences, Vol. 21, No. 5, pp. 1685-1701. https://doi.org/10.5194/nhess-21-1685-2021
  13. Iqbal, Z, Shahid, S., Ahmed, K., Ismail, T., Ziarh, G.F., Chung, E.S., Wang, X. (2021). "Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia." Atmospheric Research, Vol. 254, No. 11, 105525. https://doi.org/10.1016/j.atmosres.2021.105525
  14. Kim, Y., and Chung, E.S. (2015). "Iterative framework for robust reclaimed wastewater allocation in a changing environment using multi-criteria decision making." Water Resources Management, Vol. 29, pp. 295-311. https://doi.org/10.1007/s11269-014-0891-9
  15. Lee, J., Perera, D., Glickman, T., and Taing, L. (2020). "Water-related disasters and their health impacts: A global review." Progress in Disaster Science, Vol. 8, No. 5, 100123. https://doi.org/10.1016/j.pdisas.2020.100123
  16. Li, H., Sheffield, J., and Wood, E.F. (2010). "Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching." Jouranl of Geophysical Research, Vol. 115, D10101. https://doi.org/10.1029/2009JD012882
  17. Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., and Guan, Y. (2019). "Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China." Journal of Environmental Management, Vol. 231, pp. 10-20.
  18. Loizia, P., Voukkali, I., Zorpas, A.A., Pedreno, J.N., Chatziparaskeva, G., Inglezakis, V.J., Vardopoulos, I., and Doula, M. (2021). "Measuring the level of environmental performance in insular areas, through key performed indicators, in the framework of waste strategy development." Science of the Total Environment, Vol. 753, 141974. https://doi.org/10.1016/j.scitotenv.2020.141974
  19. Movahedinia, M., Samani, J.M.V., Barakhasi, F., Taghvaeian, S., and Stepanian, R. (2019). "Simulating the effects of low impact development approaches on urban flooding: A case study from Tehran, Iran." Water Science & Technology, Vol. 80, No. 8, pp. 1591-1600. https://doi.org/10.2166/wst.2019.412
  20. Nashwan, M.S., Shahid, S., and Chung, E.S. (2020). "High-resolution climate projections for a densely populated mediterranean region." Sustainability, Vol. 12, No. 9, 3684. https://doi.org/10.3390/su12093684
  21. O'Neill, B.C., Carter, T.R., Ebi, K., Harrison, P.A., Kemp-Benedict, E., Kok, K., Kriegler, E., Preston, B.L., Riahi, K., Sillmann, J., van Ruijven, B.J., van Vuuren, D., Carlisle, D., Conde, C., Fuglestvedt, J., Green, C., Hasegawa, T., Leininger, J., Monteith, S., and Pichs-Madruga, R. (2020). "Achievements and needs for the climate change scenario framework." Nature Climate Change, Vol. 10, pp. 1074-1084. https://doi.org/10.1038/s41558-020-00952-0
  22. Scoccimarro, E., and Gualdi, S. (2020). "Heavy daily precipitation events in the CMIP6 worst-case scenario: projected twenty-first-century changes." Journal of Climate, Vol. 33, No. 17, pp. 7631-7642. https://doi.org/10.1175/jcli-d-19-0940.1
  23. Shannon, C.E., and Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press, London and New York.
  24. Shiru, M.S., Shahid, S., Chung, E.S., Alias, N., and Scherer, L. (2019). "A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: A case study of Nigeria." Atmospheric Research, Vol. 225, pp. 1-16. https://doi.org/10.1016/j.atmosres.2019.03.033
  25. Song, J.Y., and Chung, E.S. (2017). "A multi-criteria decision analysis system for prioritizing sites and types of low impact development practices: Case of Korea." Water, Vol. 9, No. 4, 291. https://doi.org/10.3390/w9040291
  26. Song, Y.H., and Chung, E.S. (2019). "Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 1011-1023. https://doi.org/10.3741/JKWRA.2019.52.12.1011
  27. Song, Y.H., Nashwan, M.S., Shahid, S., and Chung, E.S. (2021). "Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea." Atmospheric Research, Vol. 247, 105261. https://doi.org/10.1016/j.atmosres.2020.105261
  28. Su, X., Shao, W., Liu, J., and Jiang, Y. (2020). "Multi-site statistical downscaling method using GCM-based monthly data for daily precipitation generation." Water, Vol. 12, No. 3, 904. https://doi.org/10.3390/w12030904
  29. Tobler, W. (1970). "A computer movie simulating urban growth in the Detroit region." Economic Geography, Vol. 46, No. 2, pp. 234-240. https://doi.org/10.2307/143141
  30. Yao, L., Wu, Z., Wang, Y., Sun, S., Wei, W., and Xu, Y. (2020). "Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments?." Journal of Environmental Management, Vol. 268, 110707. https://doi.org/10.1016/j.jenvman.2020.110707
  31. Yu, X., Xie, J., Jiang, R., Zuo, G., and Liang, J. (2020). "Assessment of water resource carrying capacity based on the chicken swarm optimization-projection pursuit model." Arabian Journal of Geosciences, Vol. 13, 39. https://doi.org/10.1007/s12517-019-5010-z
  32. Zhu, Y., Li, H., Yang, B., Zhang, X., Mahmud, S., Zhang, X., Yu, B., and Zhu, Y. (2021). "Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty." Journal of Cleaner Production, Vol. 293, 126114. https://doi.org/10.1016/j.jclepro.2021.126114