DOI QR코드

DOI QR Code

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali (Department of Physics, Institute of Natural Sciences, Daegu University) ;
  • Jeong, Hae Kyung (Department of Physics, Institute of Natural Sciences, Daegu University)
  • 투고 : 2021.07.22
  • 심사 : 2021.09.19
  • 발행 : 2022.02.28

초록

Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

키워드

과제정보

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1I1A3A04037469).

참고문헌

  1. S. Liu, B. Li, S. V. Mohite, P. Devaraji, L. Mao, et al., Int. J. Hydrog. Energy, 2020, 45(55), 29929-29937. https://doi.org/10.1016/j.ijhydene.2020.08.034
  2. T. Niyitanga and H. K. Jeong, J. Electroanal. Chem., 2019, 849, 113383. https://doi.org/10.1016/j.jelechem.2019.113383
  3. X. Liu, J. Z. Zhang, K. J. Huang and P. Hao, Chem. Eng. J., 2016, 302, 437-445. https://doi.org/10.1016/j.cej.2016.05.074
  4. B. Li, R. Xing, S. V. Mohite, S. S. Latthe, A. Fujishima, et al., J. Power Sources, 2019, 436, 226862. https://doi.org/10.1016/j.jpowsour.2019.226862
  5. T. Niyitanga, P. E. Evans, T. Ekanayake, P. A. Dowben and H. K. Jeong, J. Electroanal. Chem., 2019, 845, 39-47. https://doi.org/10.1016/j.jelechem.2019.05.041
  6. D. N. Sangeetha, D. K. Bhat, S. S. Kumar and M. Selvakumar, Int. J. Hydrog. Energy, 2020, 45(13), 7788-7800. https://doi.org/10.1016/j.ijhydene.2019.10.033
  7. P. Zhang and H. He, J. Alloys and Compd., 2020, 826, 153993. https://doi.org/10.1016/j.jallcom.2020.153993
  8. J. J. Zhao, X. Han, K. Tao, Q. Li, Y. L. Li, et al., Chem. Eng. J., 2018, 354, 875-884. https://doi.org/10.1016/j.cej.2018.08.102
  9. X. Wang, L. Li, Z. Wang, Z. Wu, M. Zhu, et al., Electrochim. Acta, 2020, 353, 136527. https://doi.org/10.1016/j.electacta.2020.136527
  10. A. P. Murthy, J. Theerthagiri and J. Madhavan, ACS Appl. Energy Mater., 2018, 1(4), 1512-1521. https://doi.org/10.1021/acsaem.7b00315
  11. B. Seo, G. Y. Jung, Y. J. Sa, H. Y. Jeong, J. Y. Cheon, et al., ACS Nano, 2015, 9(4), 3728-3739. https://doi.org/10.1021/acsnano.5b00786
  12. S. Song, Y. Wang, W. Li, P. Tian, S. Zhou, et al., Electrochim. Acta, 2020, 332, 135454. https://doi.org/10.1016/j.electacta.2019.135454
  13. J. Zhao, W. Li, S. Wu, F. Xu, J. Du, et al., Electrochimica Acta, 2020, 337, 135850. https://doi.org/10.1016/j.electacta.2020.135850
  14. K. Tao, Y. Gong, Q. Zhou and J. Lin, Electrochim. Acta, 2018, 286, 65-76. https://doi.org/10.1016/j.electacta.2018.07.206
  15. Z. Zhou, Y. Liu, J. Zhang, H. Pang and G. Zhu, Electrochem. Commun., 2020, 121, 106871. https://doi.org/10.1016/j.elecom.2020.106871
  16. X. Cao, D. Jia, D. Li, L. Cui and J. Liu, Chem. Eng. J., 2018, 348, 310-318. https://doi.org/10.1016/j.cej.2018.04.209
  17. G. P. Ojha, A. Muthurasu, A. P Tiwari, B. Pant, K. Chhetri, et al., Chem. Eng. J., 2020, 399, 125532. https://doi.org/10.1016/j.cej.2020.125532
  18. W. Li, J. Chen, Z. Xiao, J. Xing, C. Yang, et al., New Carbon Mater., 2020, 35, 540-546. https://doi.org/10.1016/S1872-5805(20)60507-8
  19. T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Particles, Chem Eur. J., 2013, 19(36), 11939-11948. https://doi.org/10.1002/chem.201301406
  20. P. H. Joo, J. Cheng and K. Yang, Phys. Chem. Chem. Phys., 2017, 19(44), 29927. https://doi.org/10.1039/C7CP05402E
  21. G. Ghanashyam and H. K. Jeong, J. Energy Storage, 2021, 33, 102150. https://doi.org/10.1016/j.est.2020.102150
  22. K. P. Aryal, H. K. Jeong, Chem. Phys. Lett., 2019, 730, 306-311. https://doi.org/10.1016/j.cplett.2019.06.032
  23. G. Ghanashyam and H. K. Jeong, J. Energy storage, 2020, 30, 101545. https://doi.org/10.1016/j.est.2020.101545
  24. B. Dahal, T. Mukhiya, G. P. Ojha, K. Chhetri, A. P. Tiwari, et al., Chem. Eng. J., 2020, 387, 124028. https://doi.org/10.1016/j.cej.2020.124028
  25. G. Ghanashyam and H. K. Jeong, J. Energy storage, 2019, 26, 100923. https://doi.org/10.1016/j.est.2019.100923
  26. L. Chen, T. Ji, L. Mu and Z. Zhu, Carbon, 2017, 111, 839-848. https://doi.org/10.1016/j.carbon.2016.10.054
  27. X. Xu, F. Song and X. Hu, Nat. commun., 2016, 7(1), 12324. https://doi.org/10.1038/ncomms12324
  28. B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, et al., Sci. Rep., 2017, 7(1), 1-12. https://doi.org/10.1038/s41598-016-0028-x