DOI QR코드

DOI QR Code

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology) ;
  • Lougou, Bachirou Guene (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology) ;
  • Shuai, Yong (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology) ;
  • Razzaq, Samia (School of Aerospace, Mechanical and Mechatronics Engineering, University of Sydney) ;
  • Wang, Zhijiang (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology) ;
  • Shagdar, Enkhbayar (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology) ;
  • Zhao, Jiupeng (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology)
  • Received : 2021.06.09
  • Accepted : 2021.09.28
  • Published : 2022.02.28

Abstract

The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Keywords

Acknowledgement

This work was supported by the China National Key Research and Development Plan Project (2018YFA0702300), National Natural Science Foundation of China (51950410590), Fundamental Research Funds for the Central Universities (HIT.NSRIF.2020054).

References

  1. L. Zhang, I. Merino-Garcia, J. Albo, C.M. Sanchez-Sanchez, Curr. Opin. Electrochem., 2020, 23, 65-73. https://doi.org/10.1016/j.coelec.2020.04.005
  2. A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, S. Razzaq, J. Zhao, H. Tan, Sustain. Energy Fuels., 2020, 4(9), 4352-69. https://doi.org/10.1039/D0SE00544D
  3. A. Sieminski, Annual energy outlook 2015, US Energy Inf. Adm. (2015).
  4. A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, J. Energy Chem., 2020, 49, 96-123. https://doi.org/10.1016/j.jechem.2020.01.023
  5. C.-T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P.G. De Arquer, A. Kiani, J.P. Edwards, P. De Luna, O.S. Bushuyeve, Science, 2018, 360 (6390), 783-7. https://doi.org/10.1126/science.aas9100
  6. X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinruck, K. Lim, Y. Li, M.F. Toney, K. Chan, Nat. Catal., 2019, 2(1), 55-61. https://doi.org/10.1038/s41929-018-0200-8
  7. P. Ganji, R.A. Borse, J. Xie, A.G.A. Mohamed, Y. Wang, Adv. Sustain. Syst., 2020, 4(8), 1-22.
  8. Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev., 2017, 46(5), 1427-1463. https://doi.org/10.1039/c6cs00403b
  9. S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(22), 7845-7848. https://doi.org/10.1021/ja5031529
  10. H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, J. CO2 Util., 2017, 1(20), 208-217.
  11. M. Persson, O. Jonsson, A. Wellinger, , IEA Bioenergy Task, 2007, 37, 1-34.
  12. M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res., 2018, 57(6), 2165-2177. https://doi.org/10.1021/acs.iecr.7b03514
  13. J.M. Spurgeon, B. Kumar, Energy Environ. Sci., 2018, 11(6), 1536-1551. https://doi.org/10.1039/c8ee00097b
  14. G. Liu, E.D. Larson, R.H. Williams, T.G. Kreutz, X. Guo, Energy & Fuels, 2011, 25(1), 415-437. https://doi.org/10.1021/ef101184e
  15. X. Li, P. Anderson, H.-R.M. Jhong, M. Paster, J.F. Stubbins, P.J.A. Kenis, Energy & Fuels, 2016, 30(7), 5980-5989. https://doi.org/10.1021/acs.energyfuels.6b00665
  16. T. Moller, W. Ju, A. Bagger, X. Wang, F. Luo, T. Ngo Thanh, A.S. Varela, J. Rossmeisl, P. Strasser, Energy Environ. Sci., 2019, 12(2), 640-647. https://doi.org/10.1039/c8ee02662a
  17. M. Rumayor, A. Dominguez-Ramos, P. Perez, A. Irabien, J. CO2 Util., 2019, 34, 490-499. https://doi.org/10.1016/j.jcou.2019.07.024
  18. M. Finkenrath, Cost and Performance of Carbon Dioxide Capture from Power Generation, 2011.
  19. I. Dimitriou, P. Garcia-Gutierrez, R.H. Elder, R.M. Cuellar-Franca, A. Azapagic, R.W.K. Allen, Energy Environ. Sci., 2015, 8(6), 1775-1789. https://doi.org/10.1039/C4EE04117H
  20. H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, ECS Trans., 2017, 77(11), 1425-1431. https://doi.org/10.1149/07711.1425ecst
  21. James, Brian, Colella, Whitney, Moton, Jennie, G. Saur, T. Ramsden,. United States, 2013.
  22. B.D. James, J.M. Moton, W.G. Colella, Strategic Analysis, Inc., 2014, 11-16.
  23. EIA, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2016, U.S. Energy Information Administration, 2016.
  24. W.G. Colella, B.D. James, J.M. Moton, Strateg. Anal. Inc., 2014, 27.
  25. M.R. Shaner, H.A. Atwater, N.S. Lewis, E.W. McFarland, Energy Environ. Sci., 2016, 9(7), 2354-2371. https://doi.org/10.1039/C5EE02573G
  26. M.E. Dry, Catal. Today., 2002, 71(3-4), 227-241. https://doi.org/10.1016/S0920-5861(01)00453-9
  27. J. Eppinger, K.-W. Huang, ACS Energy Lett., 2017, 2(1), 188-195. https://doi.org/10.1021/acsenergylett.6b00574
  28. D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev., 2014, 45(14), 3954-3988. https://doi.org/10.1039/c5cs00618j
  29. A.K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol., 2016, 6(1), 12-40. https://doi.org/10.1039/C5CY01276G
  30. N. Jonggeol, B. Seo, J. Kim, C. W. Lee, H. Lee, Y. J. Hwang, B. K. Min, D. K. Lee, H.-S. Oh, and U. Lee, Nat. Commun., 2019, 10 (1), 1-13. https://doi.org/10.1038/s41467-018-07882-8