DOI QR코드

DOI QR Code

The Synergistic Effect of 2-Chloromethylbenzimidazole and Potassium Iodide on the Corrosion behavior of Mild Steel in Hydrochloric Acid Solution

  • Zhou, Liben (School of Materials Science and Engineering, Jiangsu University of Science and Technology) ;
  • Cheng, Weizhong (School of Materials Science and Engineering, Jiangsu University of Science and Technology) ;
  • Wang, Deng (School of Materials Science and Engineering, Jiangsu University of Science and Technology) ;
  • Li, Zhaolei (School of Materials Science and Engineering, Jiangsu University of Science and Technology) ;
  • Zhou, Haijun (School of Materials Science and Engineering, Jiangsu University of Science and Technology) ;
  • Guo, Weijie (School of Materials Science and Engineering, Jiangsu University of Science and Technology)
  • 투고 : 2021.07.08
  • 심사 : 2021.09.23
  • 발행 : 2022.02.28

초록

The synergistic effect of 2-chloromethylbenzimidazole (2-CBI) and potassium iodide (KI) for mild steel in 1 M hydrochloric acid solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that, with the addition of 100 ppm potassium iodide, the inhibition efficiecy (IE) of 100 ppm 2-CBI in 1 M hydrochloric acid had been improved from 91.14% to 96.15%. And synergistic parameter of 100 ppm 2-CBI with different amounts of potassium iodide is always greater than 1. The adsorption of potassium iodide combining with 100 ppm 2-CBI obeys to the Langmuir adsorption isotherm. Thermodynamic adsorption parameters, including ∆G0ads, ∆Ha and ∆Sa of the adsorption of the combinned inhibitor, as well as the Ea of the mild steel corrosion in 1 M HCl with the combinned inhibitor, were calculated.

키워드

과제정보

The financial support from National Natural Science Foundations of China (No. 51903111), the Founding for Talent launching of Jiangsu University of Science and Technology (1062931603), and the Jiangsu Undergraduate Innovation and Entrepreneurship Training Program (2021) are appreciated.

참고문헌

  1. R. Solmaz, G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta, 2008, 53(20), 5941-5952. https://doi.org/10.1016/j.electacta.2008.03.055
  2. F.S. de Souza, A. Spinelli, Corros. Sci., 2009, 51(3), 642-649. https://doi.org/10.1016/j.corsci.2008.12.013
  3. A. Popova, E. Sokolova, S. Raicheva, M. Christov, Corros. Sci., 2003, 45(1), 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0
  4. A. Popova, M. Christov, S. Raicheva, E. Sokolova, Corros. Sci., 2004, 46(6), 1333-1350. https://doi.org/10.1016/j.corsci.2003.09.025
  5. A. Popova, M. Christov, Corros. Sci., 2006, 8(10), 3208-3221.
  6. Z. Li, J. Xu, W. Guo, K. Liang, Y. Zhang, B. He, Electrochemistry, 2017, 5(8), 456-460.
  7. N. Hackerman, A.C. Makrides, Ind.eng.chem, 1954, 6(3), 523-527. https://doi.org/10.1021/ie50531a038
  8. I.B. Obot, U.M. Edouk, J.Mol.Liq., 2017, 46, 66-90.
  9. N.T. Abdel Ghani, A.M. Mansour, Spectrochim.Acta, Part A, 2012, 86, 605-613. https://doi.org/10.1016/j.saa.2011.11.024
  10. K.F. Khaled, Electrochim. Acta, 2003, 48(17), 2493-2503. https://doi.org/10.1016/S0013-4686(03)00291-3
  11. J. Cruz, R. Martinez, J. Genesca, E. Garcia-Ochoa, J.Electroanal.Chem., 2004, 566(1), 111-121. https://doi.org/10.1016/j.jelechem.2003.11.018
  12. J. Aljourani, K. Raeissi, M.A. Golozar, Corros. Sci., 2009, 51(8),1836-1843. https://doi.org/10.1016/j.corsci.2009.05.011
  13. K.F. Khaled, J.Appl.Electrochem., 2010, 41(3), 277-287. https://doi.org/10.1007/s10800-010-0235-2
  14. R.L. Camacho-Mendoza, E. Gutierrez-Moreno, E. Guzman-Percastegui, E. Aquino-Torres, J. Cruz-Borbolla, J.A. Rodriguez-Avila, J.G. Alvarado-Rodriguez, O. Olvera-Neria, P. Thangarasu, J.L. Medina-Franco, J.Chem.Inf.Model., 2015, 55(11), 2391-2402. https://doi.org/10.1021/acs.jcim.5b00385
  15. Z. Li, D. Wang, B. He, X. Ye, W. Guo, Mater.Tehnol., 2018, 52(3), 307-314. https://doi.org/10.17222/mit.2017.145
  16. Fishtik, J.Electroanal.Chem., 1984, 165, 1-8. https://doi.org/10.1016/S0022-0728(84)80081-9
  17. X. Li, S. Deng, H. Fu, G. Mu, Corros. Sci., 2008, 50(9), 2635-2645. https://doi.org/10.1016/j.corsci.2008.06.026
  18. J. Liu, D. Wang, L. Gao, D. Zhang, Appl.Surf.Sci., 2016, 389, 369-377. https://doi.org/10.1016/j.apsusc.2016.07.107
  19. E.E. Oguzie, Y. Li, F.H. Wang, J.Colloid.Interface.Sci., 2007, 310(1), 90-98. https://doi.org/10.1016/j.jcis.2007.01.038
  20. I.O. Arukalam, Carbohydr.Polym., 2014, 112, 291-299. https://doi.org/10.1016/j.carbpol.2014.05.071
  21. A.A. Khadom, Reaction Kinetics, React. Kinet.Mech.Cat., 2015, 115(2) , 463-481. https://doi.org/10.1007/s11144-015-0873-9
  22. I.B. Onyeachu, M.M. Solomon, J.Mol.Liq., 2020, 313, 113536 . https://doi.org/10.1016/j.molliq.2020.113536
  23. M.M. Solomon, S.A. Umoren, I.B. Obot, A.A. Sorour, H. Gerengi, ACS Appl.Mater Interfaces, 2018, 10(33), 28112-28129. https://doi.org/10.1021/acsami.8b09487
  24. D.B. Tripathy, M. Murmu, P. Banerjee, M.A. Quraishi, Desalination, 2019, 472, 114128. https://doi.org/10.1016/j.desal.2019.114128
  25. G. Zerjav, I. Milosev, Mater.Corros., 2015, 66(12), 1402-1413. https://doi.org/10.1002/maco.201508383
  26. M. Mahdavian, S. Ashhari , Electrochim. Acta, 2010, 55(5), 1720-1724. https://doi.org/10.1016/j.electacta.2009.10.055
  27. T. Douadi, H. Hamani, D. Daoud, M. Al-Noaimi, S. Chafaa, J.Taiwan Inst.Chem.Eng., 2017, 71, 388-404. https://doi.org/10.1016/j.jtice.2016.11.026
  28. M.A. Migahed, I.F. Nassar, Electrochim. Acta, 2008, 53(6), 2877-2882. https://doi.org/10.1016/j.electacta.2007.10.070
  29. A.M. Badawi, M.A. Hegazy, A.A. El-Sawy, H.M. Ahmed, W.M. Kamel, Mater.Chem.Phys., 2010, 124(1), 458-465. https://doi.org/10.1016/j.matchemphys.2010.06.066
  30. S.A. Umoren, M.M. Solomon, J.Ind.Eng.Chem., 2015, 21, 81-100. https://doi.org/10.1016/j.jiec.2014.09.033
  31. A.S. Fouda, A.A. Al-Sarawy, E.E. El-Katori, Desalination, 2006, 201(1-3), 1-13. https://doi.org/10.1016/j.desal.2006.03.519
  32. M.A. Amin, Q. Mohsen, O.A. Hazzazi, Mater.Chem.Phys., 2009, 114(2-3), 908-914. https://doi.org/10.1016/j.matchemphys.2008.10.057
  33. Y. Feng, K.S. Siow, W.K. Teo, A.K. Hsieh, Corros. Sci., 1999, 41(5), 829-852. https://doi.org/10.1016/S0010-938X(98)00144-9
  34. P.C. Okafor, Y. Zheng, Corros. Sci., 2009, 51(4), 850-859. https://doi.org/10.1016/j.corsci.2009.01.027
  35. T. Murakawa, S. Nagaura, N. Hackerman, Corros. Sci., 1967, 7(2), 79-89. https://doi.org/10.1016/S0010-938X(67)80105-7
  36. M. Mobin, M. Rizvi, Carbohydr.Polym., 2016, 136, 384-393. https://doi.org/10.1016/j.carbpol.2015.09.027
  37. E.A. Noor, A.H. Al-Moubaraki, Mater.Chem.Phys., 2008, 110(1), 145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028
  38. F. Bentiss, M. Lebrini, M. Lagrenee, Corros. Sci., 2005, 47(12), 2915-2931. https://doi.org/10.1016/j.corsci.2005.05.034
  39. R.G. Sundaram, G. Vengatesh, M. Sundaravadivelu, Surf.Interfaces, 2021, 22, 100841. https://doi.org/10.1016/j.surfin.2020.100841
  40. N. Yilmaz, A. Fitoz, y. Ergun, K.C. Emregul, Corros. Sci., 2016, 111, 110-120. https://doi.org/10.1016/j.corsci.2016.05.002
  41. J. Saranya, M. Sowmiya, P. Sounthari, K. Parameswari, S. Chitra, K. Senthilkumar, J.Mol.Liq., 2016, 216, 42-52. https://doi.org/10.1016/j.molliq.2015.12.096
  42. M. Yadav, S. Kumar, T. Purkait, L.O. Olasunkanmi, I. Bahadur, E.E. Ebenso, J.Mol.Liq., 2016, 213, 122-138. https://doi.org/10.1016/j.molliq.2015.11.018
  43. M.S. Kumar, S.L.A. Kumar, A. Sreekanth, Ind.Eng.Chem.Res., 2012, 51(15), 5408-5418. https://doi.org/10.1021/ie203022g
  44. P. Kannan, T.S. Rao, N. Rajendran, J.Mol.Liq., 2016, 222, 586-595. https://doi.org/10.1016/j.molliq.2016.07.116
  45. X. Li, S. Deng, H. Fu, Corros. Sci., 2011, 53(11), 3704-3711. https://doi.org/10.1016/j.corsci.2011.07.016
  46. M.A.M. Ibrahim, E.M.A. Omar, Surf.Coat.Technol., 2013, 226, 7-16. https://doi.org/10.1016/j.surfcoat.2013.03.026
  47. X. Li, S. Deng, H. Fu, X. Xie, Corros. Sci., 2014, 78 , 29-42. https://doi.org/10.1016/j.corsci.2013.08.025
  48. L. Feng, S. Zhang, Y. Lu, B. Tan, S. Chen, L. Guo, Appl.Surf.Sci., 2019, 483, 901-911. https://doi.org/10.1016/j.apsusc.2019.03.299
  49. S. Martinez, I. Stern, Appl.Surf.Sci., 2002, 199(1-4), 83-89. https://doi.org/10.1016/S0169-4332(02)00546-9
  50. A. Yurt, A. Balaban, S.U. Kandemir, G. Bereket, B. Erk, Mater.Chem.Phys., 2004, 85(2-3), 420-426. https://doi.org/10.1016/j.matchemphys.2004.01.033
  51. M.A. Hegazy, A.S. El-Tabei, A.H. Bedair, M.A. Sadeq, Corros. Sci., 2012, 54, 219-230. https://doi.org/10.1016/j.corsci.2011.09.019
  52. D.K. Yadav, M.A. Quraishi, B. Maiti, Corros. Sci., 2012, 55, 254-266. https://doi.org/10.1016/j.corsci.2011.10.030
  53. S. Hari Kumar, S. Karthikeyan, Ind.Eng.Chem.Res., 2013, 52(22), 7457-7469. https://doi.org/10.1021/ie400815w
  54. Sudheer, M.A. Quraishi, Ind.Eng.Chem.Res., 2014, 53(8), 2851-2859. https://doi.org/10.1021/ie401633y
  55. H.K. Sappani, S. Karthikeyan, Ind.Eng.Chem.Res., 2014, 53(9), 3415-3425. https://doi.org/10.1021/ie401956y