DOI QR코드

DOI QR Code

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul (Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya) ;
  • Kufian, Mohd Zieauddin (Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya) ;
  • Arof, Abdul Kariem Mohd (Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya) ;
  • Osman, Zurina (Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya)
  • 투고 : 2021.08.13
  • 심사 : 2021.09.19
  • 발행 : 2022.02.28

초록

For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.

키워드

과제정보

The authors gratefully appreciate financial assistance from the Ministry of Science, Technology, and Innovation (Nanofund: 53-02-03-1089) and the Universiti Malaya (Industry-Driven Innovation Grant: PPSI-2020-CLUSTER-IDIG05).

참고문헌

  1. C. Liu, Z. G. Neale, & G. Cao, Mater. Today, 2016, 19(2), 109-123. https://doi.org/10.1016/j.mattod.2015.10.009
  2. B. L. Ellis, K. T. Lee, & L. F. Nazar, Chem. Mater., 2010, 22(3), 691-714. https://doi.org/10.1021/cm902696j
  3. A. Manthiram, B. Song, & W. Li, Energy Storage Mater., 2017, 6, 125-139. https://doi.org/10.1016/j.ensm.2016.10.007
  4. E. M. Erickson, F. Schipper, T. R. Penki, J. Y. Shin, C. Erk, F. F. Chesneau, B. Markovsky, & D. Aurbach, J. Electrochem. Soc., 2017, 164(1), A6341-A6348. https://doi.org/10.1149/2.0461701jes
  5. D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. M. Julien, J. B. Goodenough, & K. Zaghib, RSC Adv., 2014, 4(1), 154-167. https://doi.org/10.1039/C3RA45706K
  6. W. Li, B. Song, & A. Manthiram, Chem. Soc. Rev., 2017, 46(10), 3006-3059. https://doi.org/10.1039/c6cs00875e
  7. M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, & A. Van der Ven, Adv. Energy. Mater., 2017, 7(20), 1602888. https://doi.org/10.1002/aenm.201602888
  8. A. Van der Ven, J. Bhattacharya, & A. A. Belak, Acc. Chem. Res., 2013, 46(5), 1216-1225. https://doi.org/10.1021/ar200329r
  9. W. Weppner & R. A. Huggins, J. Electrochem. Soc., 1977, 124(10), 1569-1578. https://doi.org/10.1149/1.2133112
  10. W. Weppner & R. A. Huggins, J. Solid State Chem., 1977, 22(3), 297-308. https://doi.org/10.1016/0022-4596(77)90006-8
  11. A. K. Arof, M. Z. Kufian, N. Aziz, N. A. Mat Nor, & K. H. Arifin, Ionics, 2017, 23(7), 1663-1674. https://doi.org/10.1007/s11581-017-1997-x
  12. H. Wang, J. Nanosci. Nanotechnol., 2015, 15(9), 6883-6890. https://doi.org/10.1166/jnn.2015.10726
  13. T. A. Arunkumar & A. Manthiram, Electrochim. Acta, 2005, 50(28), 5568-5572. https://doi.org/10.1016/j.electacta.2005.03.033
  14. J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, & Y. K. Sun, Chem. Mater., 2004, 16(5), 906-914. https://doi.org/10.1021/cm035050s
  15. H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, & J. Li, ACS Appl. Mater. Interfaces, 2016, 8(7), 4661-4675. https://doi.org/10.1021/acsami.5b11389
  16. Y. Shu, Y. Xie, W. Yan, S. Meng, D. Sun, Y. Jin, & K. He, J. Power Sources, 2019, 433, 226708. https://doi.org/10.1016/j.jpowsour.2019.226708
  17. P. Hilbig, L. Ibing, M. Winter, & I. Cekic-Laskovic, Energies, 2019, 12(15), 2869. https://doi.org/10.3390/en12152869
  18. J. Kasnatscheew, B. Streipert, S. Roser, R. Wagner, I. Cekic Laskovic, & M. Winter, Phys. Chem. Chem. Phys., 2017, 19(24), 16078-16086. https://doi.org/10.1039/C7CP03072J
  19. G. Q. Liu, L. Wen, X. Wang, & B. Y. Ma, J. Alloys Compd., 2011, 509(38), 9377-9381. https://doi.org/10.1016/j.jallcom.2011.07.045
  20. Y. Luo, L. R. De Jesus, J. L. Andrews, A. Parija, N. Fleer, D. J. Robles, P. P. Mukherjee, & S. Banerjee, ACS Appl. Mater. Interfaces, 2018, 10(36), 30901-30911. https://doi.org/10.1021/acsami.8b10604
  21. J. Mao, K. Dai, M. Xuan, G. Shao, R. Qiao, W. Yang, V. S. Battaglia, & G. Liu, ACS Appl. Mater. Interfaces, 2016, 8(14), 9116-9124. https://doi.org/10.1021/acsami.6b00877
  22. M. Mohamedi, M. Makino, K. Dokko, T. Itoh, & I. Uchida, Electrochim. Acta, 2002, 48(1), 79-84. https://doi.org/10.1016/S0013-4686(02)00554-6
  23. S. Hou, T. Gao, X. Li, & C. Wang, Nano Energy, 2020, 67, 104254. https://doi.org/10.1016/j.nanoen.2019.104254
  24. P. Schichtel, M. Geiss, T. Leichtweiss, J. Sann, D. A. Weber, & J. Janek, J. Power Sources, 2017, 360, 593-604. https://doi.org/10.1016/j.jpowsour.2017.06.044
  25. S. Kuppan, Y. Xu, Y. Liu, & G. Chen, Nat. Commun., 2017, 8(1), 14309. https://doi.org/10.1038/ncomms14309
  26. Z. Moorhead-Rosenberg, A. Huq, J. B. Goodenough, & A. Manthiram, Chem. Mater., 2015, 27(20), 6934-6945. https://doi.org/10.1021/acs.chemmater.5b01356
  27. L. Wang, H. Li, X. Huang, & E. Baudrin, Solid State. Ion., 2011, 193(1), 32-38. https://doi.org/10.1016/j.ssi.2011.04.007
  28. Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio, & I. Nakai, J. Solid State Chem., 2001, 156(2), 286-291. https://doi.org/10.1006/jssc.2000.8990
  29. K. Takahashi, M. Saitoh, M. Sano, M. Fujita, & K. Kifune, J. Electrochem. Soc., 2004, 151(1), A173. https://doi.org/10.1149/1.1633267
  30. D. Munoz-Rojas, M. Casas-Cabanas, & E. Baudrin, Solid State. Ion., 2010, 181(11), 536-544. https://doi.org/10.1016/j.ssi.2010.02.021
  31. R. Amin & I. Belharouk, J. Power Sources, 2017, 348, 311-317. https://doi.org/10.1016/j.jpowsour.2017.02.071
  32. W.-W. Liu, D. Wang, Z. Wang, J. Deng, W.-M. Lau, & Y. Zhang, Phys. Chem. Chem. Phys., 2017, 19(9), 6481-6486. https://doi.org/10.1039/C6CP08324B
  33. B. Xu & S. Meng, J. Power Sources, 2010, 195(15), 4971-4976. https://doi.org/10.1016/j.jpowsour.2010.02.060
  34. J. Bhattacharya & A. Van der Ven, Phys. Rev. B, 2010, 81(10), 104304. https://doi.org/10.1103/physrevb.81.104304
  35. L. R. De Jesus, J. L. Andrews, A. Parija, & S. Banerjee, ACS Energy Lett., 2018, 3(4), 915-931. https://doi.org/10.1021/acsenergylett.8b00156