과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C2003731).
참고문헌
- J.M. Tarascon, M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
- B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci., 2011, 4(9), 3287-3295. https://doi.org/10.1039/c1ee01388b
- M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4301. https://doi.org/10.1021/cr020731c
- K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Adv. Energy Mater., 2018, 8(16), 1800079. https://doi.org/10.1002/aenm.201800079
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater., 2013, 23(8), 947-958. https://doi.org/10.1002/adfm.201200691
- M.S. Whittingham, Science, 1976, 192(4244), 1126-1127. https://doi.org/10.1126/science.192.4244.1126
- K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
- A. Yoshino, K. Sanechika, T. Nakajima., Geothermics, 1987, 14(4), 595-599. https://doi.org/10.1016/0375-6505(85)90011-2
- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 1997, 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
- S. Chae, S. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed., 2020, 59(1), 110-135. https://doi.org/10.1002/anie.201902085
- J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater., 2010, 22(35), E170-E192. https://doi.org/10.1002/adma.201000717
- S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Small, 2016, 12(16), 2146-2172. https://doi.org/10.1002/smll.201502299
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature, 2000, 407, 496-499. https://doi.org/10.1038/35035045
- M. v. Reddy, G. v. Subba Rao, B.V.R. Chowdari, Chem. Rev., 2013, 113(7), 5364-5457. https://doi.org/10.1021/cr3001884
- Y. Lu, L. Yu, X.W. (David) Lou, Chem, 2018, 4(5), 972-996. https://doi.org/10.1016/j.chempr.2018.01.003
- S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater., 2012, 2(7), 710-721. https://doi.org/10.1002/aenm.201200026
- X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Adv. Funct. Mater., 2018, 28(46), 1804458. https://doi.org/10.1002/adfm.201804458
- Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Nano Energy, 2014, 5, 60-66. https://doi.org/10.1016/j.nanoen.2014.02.002
- J. Yang, S. Muhammad, M.R. Jo, H. Kim, K. Song, D.A. Agyeman, Y. il Kim, W.-S. Yoon, Y.M. Kang, Chem. Soc. Rev., 2016, 45(20), 5717-5770. https://doi.org/10.1039/c5cs00734h
- S.-M. Bak, Z. Shadike, R. Lin, X. Yu, X.-Q. Yang, NPG Asia Mater., 2018, 10, 563-580. https://doi.org/10.1038/s41427-018-0056-z
- J. Cui, H. Zheng, K. He, Adv. Mater., 2021, 33(6), 2000699. https://doi.org/10.1002/adma.202000699
- X. Ou, J. Li, F. Zheng, P. Wu, Q. Pan, X. Xiong, C. Yang, M. Liu, J. Power Sources, 2017, 343, 483-491. https://doi.org/10.1016/j.jpowsour.2017.01.097
- J. Yang, T. Zhou, R. Zhu, X. Chen, Z. Guo, J. Fan, H.K. Liu, W.X. Zhang, Adv. Mater. Interfaces, 2016, 3(3), 1500464. https://doi.org/10.1002/admi.201500464
- H. Kim, W. Choi, J. Yoon, E. Lee, W.-S. Yoon, Small, 2021, 17(14), 2006433. https://doi.org/10.1002/smll.202006433
- J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, Chem. Eng. J., 2017, 325, 14-24. https://doi.org/10.1016/j.cej.2017.05.046
- M.K. Kim, S.H. Yu, A. Jin, J. Kim, I.H. Ko, K.S. Lee, J. Mun, Y.E. Sung, Chem. Commun., 2016, 52(79), 11775-11778. https://doi.org/10.1039/c6cc06712c
- J. Li, S. Hwang, F. Guo, S. Li, Z. Chen, R. Kou, K. Sun, C.J. Sun, H. Gan, A. Yu, E.A. Stach, H. Zhou, D. Su, Nat. Commun., 2019, 10, 2224. https://doi.org/10.1038/s41467-019-09931-2
- K.H. Nam, C.M. Park, J. Mater. Chem. A, 2016, 4(22), 8562-8565. https://doi.org/10.1039/C6TA01986B
- H. Kim, H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.H. Cho, M.G. Kim, B. Lee, K. Kang, J.M. Kim, W.-S. Yoon, Chem. Mater., 2014, 26(22), 6361-6370. https://doi.org/10.1021/cm5025603
- M.A. Lowe, J. Gao, H.D. Abruna, J. Mater. Chem. A, 2013, 1(6), 2094-2103. https://doi.org/10.1039/C2TA01270G
- U. Boesenberg, M.A. Marcus, A.K. Shukla, T. Yi, E. McDermott, P.F. Teh, M. Srinivasan, A. Moewes, J. Cabana, Sci. Rep., 2014, 4, 7133. https://doi.org/10.1038/srep07133
- L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan, S. Jin, J. Am. Chem. Soc., 2016, 138(8), 2838-2848. https://doi.org/10.1021/jacs.6b00061
- J. Jang, J.H. Ku, S.M. Oh, T. Yoon, ACS Appl. Mater. Interfaces, 2021, 13(8), 9814-9819. https://doi.org/10.1021/acsami.0c19894
- J. Yoon, W. Choi, T. Kim, H. Kim, Y. Seok Choi, J. Man Kim, W.-S. Yoon, J. Energy Chem., 2021, 53, 276-284. https://doi.org/10.1016/j.jechem.2020.05.029
- Y. Li, H. Sun, X. Cheng, Y. Zhang, K. Zhao, Nano Energy, 2016, 27, 95-102. https://doi.org/10.1016/j.nanoen.2016.06.045
- S.Y. Lee, L. Wu, A.S. Poyraz, J. Huang, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, M. Kim, Y. Zhu, Adv. Mater., 2017, 29(43), 1703186. https://doi.org/10.1002/adma.201703186
- R. Cai, S. Guo, Y. Wu, S. Zhang, Y. Sun, S. Chen, P. Gao, C. Zhu, J. Chen, Z. Zhu, L. Sun, F. Xu, Energy Storage Mater., 2021, 37, 345-353. https://doi.org/10.1016/j.ensm.2021.02.023
- C. Zhu, F. Xu, H. Min, Y. Huang, W. Xia, Y. Wang, Q. Xu, P. Gao, L. Sun, Adv. Funct. Mater., 2017, 27(17), 1606163. https://doi.org/10.1002/adfm.201606163
- W. Tang, C.X. Peng, C.T. Nai, J. Su, Y.P. Liu, M.V.V. Reddy, M. Lin, K.P. Loh, Small, 2015, 11(20), 2446-2453. https://doi.org/10.1002/smll.201403018
- S.J. Rezvani, R. Gunnella, A. Witkowska, F. Mueller, M. Pasqualini, F. Nobili, S. Passerini, A. di Cicco, ACS Appl. Mater. Interfaces, 2017, 9(5), 4570-4576. https://doi.org/10.1021/acsami.6b12408
- R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J.M. Tarascon, Chem. Mater., 2004, 16(6), 1056-1061. https://doi.org/10.1021/cm0311269
- L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. le Cras, J. Power Sources, 2014, 248, 861-873. https://doi.org/10.1016/j.jpowsour.2013.10.015
- Y.Y. Hu, Z. Liu, K.W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.S. Du, K.W. Chapman, P.J. Chupas, X.Q. Yang, C.P. Grey, Nat. Mater., 2013, 12, 1130-1136. https://doi.org/10.1038/nmat3784
- X. Hua, P.K. Allan, C. Gong, P.A. Chater, E.M. Schmidt, H.S. Geddes, A.W. Robertson, P.G. Bruce, A.L. Goodwin, Nat. Commun., 2021, 12, 561. https://doi.org/10.1038/s41467-020-20736-6
- O.J. Borkiewicz, K.W. Chapman, P.J. Chupas, Phys. Chem. Chem. Phys., 2013, 15(22), 8466-8469. https://doi.org/10.1039/c3cp50590a
- H. Kim, W. Choi, J. Yoon, J.H. Um, W. Lee, J. Kim, J. Cabana, W.-S. Yoon, Chem. Rev., 2020, 120(14), 6934-6976. https://doi.org/10.1021/acs.chemrev.9b00618
- M. Keppeler, M. Srinivasan, ChemElectroChem, 2017, 4(11), 2727-2754. https://doi.org/10.1002/celc.201700747
- S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.-M. Tarascon, J. Electrochem. Soc., 2002, 149(5), A627-A634. https://doi.org/10.1149/1.1467947
- J. Jamnik, J. Maier, Phys. Chem. Chem. Phys., 2003, 5(23), 5215-5220. https://doi.org/10.1039/b309130a
- P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater., 2003, 13(8), 621-625. https://doi.org/10.1002/adfm.200304406
- H. Kim, W.I. Choi, Y. Jang, M. Balasubramanian, W. Lee, G.O. Park, S. B. Park, J. Yoo, J.S. Hong, Y.S. Choi, H.S. Lee, I.T. Bae, J.M. Kim, W.-S. Yoon, ACS Nano, 2018, 12(3), 2909-2921. https://doi.org/10.1021/acsnano.8b00435
- N.A. Kaskhedikar, J. Maier, Adv. Mater., 2009, 21(25-26), 2664-2680. https://doi.org/10.1002/adma.200901079
- J.K. Shon, H.S. Lee, G.O. Park, J. Yoon, E. Park, G.S. Park, S.S. Kong, M. Jin, J.M. Choi, H. Chang, S. Doo, J.M. Kim, W.-S. Yoon, C. Pak, H. Kim, G.D. Stucky, Nat. Commun., 2016, 7, 11049. https://doi.org/10.1038/ncomms11049
- Q. Li, J. Wu, Z. Yao, Y. Xu, M.M. Thackeray, C. Wolverton, V.P. Dravid, Nano Energy, 2018, 44, 15-22. https://doi.org/10.1016/j.nanoen.2017.11.052
- K. He, H.L. Xin, K. Zhao, X. Yu, D. Nordlund, T.C. Weng, J. Li, Y. Jiang, C.A. Cadigan, R.M. Richards, M.M. Doeff, X.Q. Yang, E.A. Stach, J. Li, F. Lin, D. Su, Nano Lett., 2015, 15(2), 1437-1444. https://doi.org/10.1021/nl5049884
- K.E. Gregorczyk, Y. Liu, J.P. Sullivan, G.W. Rubloff, ACS Nano, 2013, 7(7), 6354-6360. https://doi.org/10.1021/nn402451s
- L. Luo, J. Wu, J. Xu, V.P. Dravid, ACS Nano, 2014, 8(11), 11560-11566. https://doi.org/10.1021/nn504806h
- S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M. Tarascon, J. Electrochem. Soc., 2001, 148(4), A285-A292. https://doi.org/10.1149/1.1353566
- Y. Zeng, L. Li, H. Li, X. Huang, L. Chen, Ionics, 2009, 15, 91-96. https://doi.org/10.1007/s11581-008-0242-z
- D.C. Bock, G.H. Waller, A.N. Mansour, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, J. Phys. Chem. C, 2018, 122(26), 14257-14271. https://doi.org/10.1021/acs.jpcc.8b01970
- K. Zhou, S. Wang, S. Zhang, F. Kang, B. Li, J. Mater. Chem. A, 2020, 8(28), 14031-14042. https://doi.org/10.1039/d0ta04054a
- F. Gong, Q. Zhou, J. Liu, D. Wang, S. Wu, D.D. Xia, Energy and Fuels, 2020, 34(6), 7616-7621. https://doi.org/10.1021/acs.energyfuels.0c00894
- T. Zhu, Y. Wang, Y. Li, R. Cai, J. Zhang, C. Yu, J. Wu, J. Cui, Y. Zhang, P.M. Ajayan, Y. Wu, ACS Appl. Nano Mater., 2020, 3(10), 10369-10379. https://doi.org/10.1021/acsanm.0c02290
- C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 7(5), 4459-4469. https://doi.org/10.1021/nn401059h
- J. Zhu, W. Tu, H. Pan, H. Zhang, B. Liu, Y. Cheng, Z. Deng, H. Zhang, ACS Nano, 2020, 14(5), 5780-5787. https://doi.org/10.1021/acsnano.0c00712
- M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen, Z. Hou, ACS Appl. Mater. Interfaces, 2017, 9(11), 9662-9668. https://doi.org/10.1021/acsami.6b16396
- W. Zhang, J. Sheng, J. Zhang, T. He, L. Hu, R. Wang, L. Mai, S. Mu, J. Mater. Chem. A, 2016, 4(43), 16936-16945. https://doi.org/10.1039/C6TA06933A
- Y. Kim, J. Yoon, G.O. Park, S. bin Park, H. Kim, J.M. Kim, W.-S. Yoon, J. Power Sources, 2018, 396, 749-753. https://doi.org/10.1016/j.jpowsour.2018.06.089
- H. Kim, H. Kim, S. Muhammad, J.H. Um, M.S.A. Sher Shah, P.J. Yoo, W.-S. Yoon, J. Power Sources, 2020, 446, 227321. https://doi.org/10.1016/j.jpowsour.2019.227321
- M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo, J. Zhu, H. Xia, Adv. Funct. Mater., 2019, 29(6), 1807377. https://doi.org/10.1002/adfm.201807377
- B. Wang, E.H. Ang, Y. Yang, Y. Zhang, H. Geng, M. Ye, C.C. Li, Adv. Funct. Mater., 2020, 30(28), 2001708 https://doi.org/10.1002/adfm.202001708
- N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, Adv. Energy Mater., 2015, 5(5), 1401123. https://doi.org/10.1002/aenm.201401123
- S. Peng, L. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, ChemSusChem, 2014, 7(8), 2212-2220. https://doi.org/10.1002/cssc.201402161
- Y. Lian, F. Chen, H. Kang, C. Wu, M. Zhang, S. Xu, Appl. Surf. Sci., 2020, 507, 145061. https://doi.org/10.1016/j.apsusc.2019.145061
- G. Ke, H. Chen, J. He, X. Wu, Y. Gao, Y. Li, H. Mi, Q. Zhang, C. He, X. Ren, Chem. Eng. J., 2021, 403, 126251. https://doi.org/10.1016/j.cej.2020.126251
- J.S. Cho, J.S. Park, Y.C. Kang, Nano Res., 2017, 10(3), 897-907. https://doi.org/10.1007/s12274-016-1346-9
- Y. Liu, N. Zhang, H. Kang, M. Shang, L. Jiao, J. Chen, Chem. Eur. J., 2015, 21(33), 11878-11884. https://doi.org/10.1002/chem.201501759
- D. Chen, G. Chen, J. Pei, Y. Hu, Z. Qin, J. Wang, F. Wu, ChemElectroChem, 2017, 4(9), 2158-2163. https://doi.org/10.1002/celc.201700384
- H. Chen, G. Ke, X. Wu, W. Li, H. Mi, Y. Li, L. Sun, Q. Zhang, C. He, X. Ren, Nanoscale, 2021, 13(6), 3782-3789. https://doi.org/10.1039/D0NR07355E
- D. Ma, Q. Zhu, X. Li, H. Gao, X. Wang, X. Kang, Y. Tian, ACS Appl. Mater. Interfaces, 2019, 11(8), 8009-8017. https://doi.org/10.1021/acsami.8b21237
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, Adv. Funct. Mater., 2017, 27(23), 1700522. https://doi.org/10.1002/adfm.201700522
- J.S. Cho, S.Y. Lee, J.K. Lee, Y.C. Kang, ACS Appl. Mater. Interfaces, 2016, 8(33), 21343-21349. https://doi.org/10.1021/acsami.6b05758
- G. Jiang, H. Han, W. Zhuang, X. Xu, S. Kaskel, F. Xu, H. Wang, J. Mater. Chem. A, 2019, 7(29), 17561-17569. https://doi.org/10.1039/c9ta03391b
- Y. Dong, Y. Li, H. Shi, J. Qin, S. Zheng, R. He, Z.S. Wu, Carbon, 2020, 159, 213-220. https://doi.org/10.1016/j.carbon.2019.12.041
- V. Sridhar, H. Park, J. Alloys Compd., 2019, 808, 151748 https://doi.org/10.1016/j.jallcom.2019.151748
- J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan, X. Dong, Nano Res., 2016, 9(3), 612-621. https://doi.org/10.1007/s12274-015-0941-5
- G.A. Li, C.Y. Wang, W.C. Chang, H.Y. Tuan, ACS Nano, 2016, 10(9), 8632-8644. https://doi.org/10.1021/acsnano.6b03954
- X. Zhu, Y. Zhong, H. Zhai, Z. Yan, D. Li, Electrochim. Acta, 2014, 132, 364-369. https://doi.org/10.1016/j.electacta.2014.03.132
- C. Li, Z. Xue, J. Qin, M. Sawangphruk, P. Yu, X. Zhang, R. Liu, J. Alloys Compd., 2020, 842, 155812. https://doi.org/10.1016/j.jallcom.2020.155812
- L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, P. Shen, Nano Energy, 2013, 2(2), 276-282. https://doi.org/10.1016/j.nanoen.2012.09.012
- X. Feng, Q. Shen, Y. Shi, J. Zhang, Electrochim. Acta, 2016, 220, 391-397. https://doi.org/10.1016/j.electacta.2016.10.112
- X. Gu, C. Yan, L. Yan, L. Cao, F. Niu, D. Liu, P. Dai, L. Li, J. Yang, X. Zhao, J. Mater. Chem. A, 2017, 5(47), 24645-24650. https://doi.org/10.1039/C7TA08532J
- S. Wu, M. Lu, X. Tian, C. Jiang, Chem. Eng. J., 2017, 313, 610-618. https://doi.org/10.1016/j.cej.2016.12.085
- J. Yao, T. Jin, Y. Li, S. Xiao, B. Huang, J. Jiang, J. Alloys Compd., 2021, 886, 161238. https://doi.org/10.1016/j.jallcom.2021.161238
- Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, J. Power Sources, 2007, 173(1), 495-501. https://doi.org/10.1016/j.jpowsour.2007.06.022
- K. Zhang, Y. Li, X. Hu, F. Liang, L. Wang, R. Xu, Y. Dai, Y. Yao, Chem. Eng. J., 2021, 404, 126464. https://doi.org/10.1016/j.cej.2020.126464
- C.H. Jo, H. Yashiro, S. Yuan, L. Shi, S.T. Myung, ACS Appl. Mater. Interfaces, 2018, 10(47), 40523-40530. https://doi.org/10.1021/acsami.8b13641
- J.H. Um, H. Kim, Y.-H. Cho, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 92-98. https://doi.org/10.33961/jecst.2019.00493
- S.W. Lee, C.W. Lee, S.B. Yoon, M.S. Kim, J.H. Jeong, K.W. Nam, K.C. Roh, K.B. Kim, J. Power Sources, 2016, 312, 207-215. https://doi.org/10.1016/j.jpowsour.2016.02.049
- Y. Kim, S. Muhammad, H. Kim, Y.-H. Cho, H. Kim, J.M. Kim, W.-S. Yoon, ChemSusChem, 2015, 8(14), 2378-2384. https://doi.org/10.1002/cssc.201403488
- F. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem. Chem. Phys., 2013, 15(38), 15876-15887. https://doi.org/10.1039/c3cp52125g
- S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater., 2020, 10(1), 1902485. https://doi.org/10.1002/aenm.201902485
- S. Hariharan, K. Saravanan, V. Ramar, P. Balaya, Phys. Chem. Chem. Phys., 2013, 15(8), 2945-2953. https://doi.org/10.1039/c2cp44572g
- W. Xia, F. Xu, C. Zhu, H.L. Xin, Q. Xu, P. Sun, L. Sun, Nano Energy, 2016, 27, 447-456. https://doi.org/10.1016/j.nanoen.2016.07.017
- Z. Liu, M. Qin, S. Guo, C. Li, Q. Su, X. Cao, G. Fang, S. Liang, Mater. Chem. Front., 2021, 5(4), 1694-1715. https://doi.org/10.1039/D0QM01012J
- X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev., 2013, 42(5), 1934-1946. https://doi.org/10.1039/c2cs35387c
- X.Y. Yu, L. Yu, X.W. Lou, Adv. Energy Mater., 2016, 6(3), 1501333. https://doi.org/10.1002/aenm.201501333
- K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources, 2006, 153(2), 380-384. https://doi.org/10.1016/j.jpowsour.2005.05.062
- S. Dai, L. Wang, M. Cao, Z. Zhong, Y. Shen, M. Wang, Mater. Today Energy, 2019, 12, 114-128. https://doi.org/10.1016/j.mtener.2018.12.011
- A. Debart, L. Dupont, R. Patrice, J.M. Tarascon, Solid State Sci., 2006, 8(6), 640-651. https://doi.org/10.1016/j.solidstatesciences.2006.01.013
- G.L. Xu, T. Sheng, L. Chong, T. Ma, C.J. Sun, X. Zuo, D.J. Liu, Y. Ren, X. Zhang, Y. Liu, S.M. Heald, S.G. Sun, Z. Chen, K. Amine, Nano Lett., 2017, 17(2), 953-962. https://doi.org/10.1021/acs.nanolett.6b04294
- Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang, J. Yue, J. Yang, Y. Qian, Nano Energy, 2015, 12, 528-537. https://doi.org/10.1016/j.nanoen.2015.01.019
- S. Li, P. Liu, X. Huang, Y. Tang, H. Wang, J. Mater. Chem. A, 2019, 7(18), 10988-10997. https://doi.org/10.1039/c9ta01089k
- Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Adv. Mater., 2018, 30(36), 1802745. https://doi.org/10.1002/adma.201802745
- Y.N. Ko, S.H. Choi, Y.C. Kang, ACS Appl. Mater. Interfaces, 2016, 8(10), 6449-6456. https://doi.org/10.1021/acsami.5b11963
- X. Yang, J. Zhang, Z. Wang, H. Wang, C. Zhi, D.Y.W. Yu, A.L. Rogach, Small, 2018, 14(7), 1702669. https://doi.org/10.1002/smll.201702669
- C. Han, Z. Li, W.J. Li, S.L. Chou, S.X. Dou, J. Mater. Chem. A, 2014, 2(30), 11683-11690. https://doi.org/10.1039/C4TA01579G
- M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today, 2017, 20(8), 425-451. https://doi.org/10.1016/j.mattod.2017.03.019
- M. Idrees, A. Mukhtar, Ata-ur-Rehman, S.M. Abbas, Q. Zhang, X. Li, Mater. Today Commun., 2021, 27, 102363. https://doi.org/10.1016/j.mtcomm.2021.102363
- X. Li, C. Deng, H. Wang, J. Si, S. Zhang, B. Huang, ACS Appl. Mater. Interfaces, 2021, 13(6), 7297-7307. https://doi.org/10.1021/acsami.0c21447
- J. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu, L. Monconduit, J. Mater. Chem. A, 2014, 2(7), 2050-2059. https://doi.org/10.1039/C3TA13976J
- K.H. Kim, S.H. Hong, Adv. Energy Mater., 2021, 11(9), 2003609. https://doi.org/10.1002/aenm.202003609
- S. Zhao, Z. Wang, Y. He, H. Jiang, Y.W. Harn, X. Liu, C. Su, H. Jin, Y. Li, S. Wang, Q. Shen, Z. Lin, Adv. Energy Mater., 2019, 9(26), 1901093.
- W.A. Ang, N. Gupta, R. Prasanth, S. Madhavi, ACS Appl. Mater. Interfaces, 2012, 4(12), 7011-7019. https://doi.org/10.1021/am3022653
- L. Su, J. Hei, X. Wu, L. Wang, Z. Zhou, Adv. Funct. Mater., 2017, 27(10), 1605544. https://doi.org/10.1002/adfm.201605544
- Y. Zhang, C. Wang, Y. Dong, R. Wei, J. Zhang, Chem. Eur. J., 2021, 27(3), 993-1001. https://doi.org/10.1002/chem.202003309
- L. Wang, W. Tang, Y. Jing, L. Su, Z. Zhou, ACS Appl. Mater. Interfaces, 2014, 6(15), 12346-12352. https://doi.org/10.1021/am5021233
- B. Philippe, M. Valvo, F. Lindgren, H. Rensmo, K. Edstrom, Chem. Mater., 2014, 26(17), 5028-5041. https://doi.org/10.1021/cm5021367
- Y.X. Lin, Z. Liu, K. Leung, L.Q. Chen, P. Lu, Y. Qi, J. Power Sources, 2016, 309, 221-230. https://doi.org/10.1016/j.jpowsour.2016.01.078
- B. Philippe, M. Hahlin, K. Edstrom, T. Gustafsson, H. Siegbahn, H. Rensmo, J. Electrochem. Soc., 2016, 163(2), A178-A191. https://doi.org/10.1149/2.0051602jes
- C. Xiao, R. Usiskin, J. Maier, Adv. Funct. Mater., 2021, 31(25), 2100938. https://doi.org/10.1002/adfm.202100938
- Y. Kim, J.H. Lee, S. Cho, Y. Kwon, I. In, J. Lee, N.H. You, E. Reichmanis, H. Ko, K.T. Lee, H.K. Kwon, D.H. Ko, H. Yang, B. Park, ACS Nano, 2014, 8(7), 6701-6712. https://doi.org/10.1021/nn500218m
- S. Permien, S. Indris, A.L. Hansen, M. Scheuermann, D. Zahn, U. Schurmann, G. Neubuser, L. Kienle, E. Yegudin, W. Bensch, ACS Appl. Mater. Interfaces, 2016, 8(24), 15320-15332. https://doi.org/10.1021/acsami.6b03185
- J.H. Um, K. Palanisamy, M. Jeong, H. Kim, W.-S. Yoon, ACS Nano, 2019, 13(5), 5674-5685. https://doi.org/10.1021/acsnano.9b00964
- E. Ventosa, W. Xia, S. Klink, F. la Mantia, M. Muhler, W. Schuhmann, Electrochim. Acta, 2012, 65, 22-29. https://doi.org/10.1016/j.electacta.2011.12.128
- W. Xing, J. Electrochem. Soc., 1997, 144(4), 1195-1201. https://doi.org/10.1149/1.1837572
- G. Ramos-Sanchez, G. Chen, A.R. Harutyunyan, P.B. Balbuena, RSC Adv., 2016, 6(33), 27260-27266. https://doi.org/10.1039/C5RA27225D
- K. Omichi, G. Ramos-Sanchez, R. Rao, N. Pierce, G. Chen, P.B. Balbuena, A.R. Harutyunyan, J. Electrochem. Soc., 2015, 162(10), A2106-A2115. https://doi.org/10.1149/2.0591510jes
- A. Kraytsberg, Y. Ein-Eli, J Solid State Electrochem., 2017, 21, 1907-1923. https://doi.org/10.1007/s10008-017-3580-9
- C. Wu, S.X. Dou, Y. Yu, Small, 2018, 14(22), 1703671. https://doi.org/10.1002/smll.201703671
- Y.T. Lee, C.T. Kuo, T.R. Yew, ACS Appl. Mater. Interfaces, 2021, 13(1), 570-579. https://doi.org/10.1021/acsami.0c18368
- P. Liu, J.J. Vajo, J.S. Wang, W. Li, J. Liu, J. Phys. Chem. C, 2012, 116(10), 6467-6473. https://doi.org/10.1021/jp211927g
- H. Kim, H. Kim, H. Kim, J. Kim, G. Yoon, K. Lim, W.-S. Yoon, K. Kang, Adv. Funct. Mater., 2016, 26(28), 5042-5050. https://doi.org/10.1002/adfm.201601357
- S. Li, Z. Shadike, G. Kwon, X.Q. Yang, J.H. Lee, S. Hwang, Chem. Mater., 2021, 33(10), 3515-3523. https://doi.org/10.1021/acs.chemmater.0c04466
- D. Chang, M.H. Chen, A. van der Ven, Chem. Mater., 2015, 27(22), 7593-7600. https://doi.org/10.1021/acs.chemmater.5b02356
- T. Takeuchi, H. Sakaebe, H. Kageyama, T. Sakai, K. Tatsumi, J. Electrochem. Soc., 2008, 155(9), A679-A684. https://doi.org/10.1149/1.2953496
- J. Zhang, P. Gu, J. Xu, H. Xue, H. Pang, Nanoscale, 2016, 8(44), 18578-18595. https://doi.org/10.1039/c6nr07207k
- B. Cao, Z. Liu, C. Xu, J. Huang, H. Fang, Y. Chen, J. Power Sources, 2019, 414, 233-241. https://doi.org/10.1016/j.jpowsour.2019.01.001
- Z. Zhang, W. Li, T.-W. Ng, W. Kang, C.-S. Lee, W. Zhang, J. Mater. Chem. A, 2015, 3(41), 20527-20534. https://doi.org/10.1039/C5TA05723J
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, Nat. Commun., 2014, 5, 4526. https://doi.org/10.1038/ncomms5526
- J. Yoon, W. Choi, H. Kim, Y.S. Choi, J.M. Kim, W.-S. Yoon, J. Power Sources, 2021, 493, 229682. https://doi.org/10.1016/j.jpowsour.2021.229682
- Z. Li, Y. Fang, J. Zhang, X.W. (David) Lou, Adv. Mater., 2018, 30(30), 1800525. https://doi.org/10.1002/adma.201800525
- H. Kim, N. Venugopal, J. Yoon, W.-S. Yoon, J. Alloys Compd., 2019, 778, 37-46. https://doi.org/10.1016/j.jallcom.2018.11.107
- R. Zhao, Q. Li, C. Wang, L. Yin, Electrochim. Acta, 2016, 197, 58-67. https://doi.org/10.1016/j.electacta.2016.03.047
- S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano, 2015, 9(12), 12464-12472. https://doi.org/10.1021/acsnano.5b05891
- L. Yu, J.F. Yang, X.W.D. Lou, Angew. Chem. Int. Ed., 2016, 55(43), 13422-13426. https://doi.org/10.1002/anie.201606776
- K. Xu, X. Shen, C. Song, H. Chen, Y. Chen, Z. Ji, A. Yuan, X. Yang, L. Kong, Small, 2021, 17(34), 2101080. https://doi.org/10.1002/smll.202101080
- W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao, C. Shen, Adv. Mater., 2019, 31(8), 1806664. https://doi.org/10.1002/adma.201806664
- Y. Meng, Y. Cheng, X. Ke, G. Ren, F. Zhu, J. Electrochem. Sci. Technol., 2021, 12(2), 285-295. https://doi.org/10.33961/jecst.2020.01648
- S. Tian, B. Li, B. Zhang, Y. Wang, X. Yang, H. Ye, Z. Xia, G. Zheng, J. Electrochem. Sci. Technol., 2020, 11(4), 384-391. https://doi.org/10.33961/jecst.2020.01095
- R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
- W. Zhao, W. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
- G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano, 2012, 6(4), 3214-3223. https://doi.org/10.1021/nn300098m
- X.Y. Shan, G. Zhou, L.C. Yin, W.J. Yu, F. Li, H.M. Cheng, J. Mater. Chem. A, 2014, 2(42), 17808-17814. https://doi.org/10.1039/C4TA04460F
- R.W. Johnson, A. Hultqvist, S.F. Bent, Mater. Today, 2014, 17(5), 236-246. https://doi.org/10.1016/j.mattod.2014.04.026
- Q.H. Wu, B. Qu, J. Tang, C. Wang, D. Wang, Y. Li, J.G. Ren, Electrochim. Acta, 2015, 156, 147-153. https://doi.org/10.1016/j.electacta.2014.12.149
- E. Kang, Y.S. Jung, A.S. Cavanagh, G.H. Kim, S.M. George, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater., 2011, 21(13), 2430-2438. https://doi.org/10.1002/adfm.201002576
- H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang, J. Mater. Chem. A, 2018, 6(10), 4374-4385. https://doi.org/10.1039/C8TA00290H
- W. Ren, W. Zhou, H. Zhang, C. Cheng, ACS Appl. Mater. Interfaces, 2017, 9(1), 487-495. https://doi.org/10.1021/acsami.6b13179
- N. Yesibolati, M. Shahid, W. Chen, M.N. Hedhili, M.C. Reuter, F.M. Ross, H.N. Alshareef, Small, 2014, 10(14), 2849-2858. https://doi.org/10.1002/smll.201303898
- B. Ahmed, D.H. Anjum, M.N. Hedhili, H.N. Alshareef, Small, 2015, 11(34), 4341-4350. https://doi.org/10.1002/smll.201500919
- B. Ahmed, M. Shahid, D.H. Nagaraju, D.H. Anjum, M.N. Hedhili, H.N. Alshareef, ACS Appl. Mater. Interfaces, 2015, 7(24), 13154-13163. https://doi.org/10.1021/acsami.5b03395
- X. Li, J. Liu, L. Ouyang, B. Yuan, L. Yang, M. Zhu, Appl. Surf. Sci., 2018, 436, 912-918. https://doi.org/10.1016/j.apsusc.2017.12.069
- B. Wang, G. Wang, Z. Zheng, H. Wang, J. Bai, J. Bai, Electrochim. Acta, 2013, 106, 235-243. https://doi.org/10.1016/j.electacta.2013.05.085
- Z. Hu, H. Cui, J. Li, G. Lei, Z. Li, Ceram. Int., 2020, 46(11), 18868-18877. https://doi.org/10.1016/j.ceramint.2020.04.207
- H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, Y. Deng, J. Mater. Chem. A, 2019, 7(15), 8700-8722. https://doi.org/10.1039/c9ta00126c
- L. Wang, J. Swiatowska, S. Dai, M. Cao, Z. Zhong, Y. Shen, M. Wang, Mater. Today Energy, 2019, 11, 46-60. https://doi.org/10.1016/j.mtener.2018.10.017
- V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Langmuir, 2012, 28(1), 965-976. https://doi.org/10.1021/la203712s
- Y.B. Yohannes, S.D. Lin, N.-L. Wu, J. Electrochem. Soc., 2017, 164(14), A3641-A3648. https://doi.org/10.1149/2.0681714jes
- Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem., 2018, 130(14), 3718-3722. https://doi.org/10.1002/ange.201712907
- X. Han, J. Sun, Chem. Commun., 2020, 56(45), 6047-6049. https://doi.org/10.1039/d0cc01853h
- V. Winkler, G. Kilibarda, S. Schlabach, D. v. Szabo, T. Hanemann, M. Bruns, J. Phys. Chem. C, 2016, 120(43), 24706-24714. https://doi.org/10.1021/acs.jpcc.6b06662
- K.H. Seng, L. Li, D.P. Chen, Z.X. Chen, X.L. Wang, H.K. Liu, Z.P. Guo, Energy, 2013, 58, 707-713. https://doi.org/10.1016/j.energy.2013.06.011
- Y. Wang, X. Guo, Z. Wang, M. Lu, B. Wu, Y. Wang, C. Yan, A. Yuan, H. Yang, J. Mater. Chem. A, 2017, 5(48), 25562-25573. https://doi.org/10.1039/C7TA08314A
- Z. Zhang, X. Zhao, J. Li, ChemNanoMat, 2016, 2(3), 196-200. https://doi.org/10.1002/cnma.201500194
- N. Kumar, A. Sen, K. Rajendran, R. Rameshbabu, J. Ragupathi, H.A. Therese, T. Maiyalagan, RSC Adv., 2017, 7(40), 25041-25053. https://doi.org/10.1039/C7RA02013A
- L. Zhang, Z. Wei, S. Yao, Y. Gao, X. Jin, G. Chen, Z. Shen, F. Du, Adv. Mater., 2021, 33(20), 2100210. https://doi.org/10.1002/adma.202100210
- K. Chen, Y. Dong Noh, K. Li, S. Komarneni, D. Xue, J. Phys. Chem. C, 2013, 117(20), 10770-10779. https://doi.org/10.1021/jp4018025
- S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett., 2010, 13(9), A132-A134. https://doi.org/10.1149/1.3458648
- Y. Ma, C. Fang, B. Ding, G. Ji, J.Y. Lee, Adv. Mater., 2013, 25(33), 4646-4652. https://doi.org/10.1002/adma.201301906
- A. Palmieri, S. Yazdani, R. Kashfi-Sadabad, S.G. Karakalos, M.T. Pettes, W.E. Mustain, J. Phys. Chem. C, 2018, 122(13), 7120-7127. https://doi.org/10.1021/acs.jpcc.8b00403
- W. Wang, J. Qin, Z. Yin, M. Cao, ACS Nano, 2016, 10(11), 10106-10116. https://doi.org/10.1021/acsnano.6b05150
- P. Li, Y. Yang, S. Gong, F. Lv, W. Wang, Y. Li, M. Luo, Y. Xing, Q. Wang, S. Guo, Nano Res., 2019, 12(9), 2218-2223. https://doi.org/10.1007/s12274-018-2250-2
- T.V. Thi, A.K. Rai, J. Gim, J. Kim, J. Power Sources, 2015, 292, 23-30. https://doi.org/10.1016/j.jpowsour.2015.05.029
- D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Chem. Commun., 2012, 48(45), 5608-5610. https://doi.org/10.1039/c2cc32033a
- I.A. Courtney, J. Electrochem. Soc., 1997, 144(6), 2045-2052. https://doi.org/10.1149/1.1837740
- Y.M. Lin, K.C. Klavetter, A. Heller, C.B. Mullins, J. Phys. Chem. Letters, 2013, 4(6), 999-1004. https://doi.org/10.1021/jz4003058
- J. Wu, N. Luo, S. Huang, W. Yang, M. Wei, J. Mater. Chem. A, 2019, 7(9), 4574-4580. https://doi.org/10.1039/c8ta12434e
- Y. Wang, Z.X. Huang, Y. Shi, J.I. Wong, M. Ding, H.Y. Yang, Sci. Rep., 2015, 5, 9164. https://doi.org/10.1038/srep09164
- C.H. Kim, Y.S. Jung, K.T. Lee, J.H. Ku, S.M. Oh, Electrochim. Acta, 2009, 54(18), 4371-4377. https://doi.org/10.1016/j.electacta.2009.03.009
- L. Wang, Q. Zhao, Z. Wang, Y. Wu, X. Ma, Y. Zhu, C. Cao, Nanoscale, 2020, 12(1), 248-255. https://doi.org/10.1039/c9nr07849e
- J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, J. Guo, J. Alloys Compd., 2018, 748, 1013-1021. https://doi.org/10.1016/j.jallcom.2018.03.155
- K.H. Seng, M.H. Park, Z.P. Guo, H.K. Liu, J. Cho, Nano Lett., 2013, 13(3), 1230-1236. https://doi.org/10.1021/nl304716e
- Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.X. Miao, G. Yu, J.S. Moodera, Nat. Mater., 2021, 20, 76-83. https://doi.org/10.1038/s41563-020-0756-y
- H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li, H. Wang, X. Li, F. Zuo, F. Zhang, X. Wang, W. Ye, Q. Li, Y. Long, Q. Li, S. Yan, X. Liu, X. Zhang, G. Yu, G.X. Miao, Adv. Mater., 2021, 33(12), 2006629. https://doi.org/10.1002/adma.202006629
- M.Y. Cheng, Y.S. Ye, T.M. Chiu, C.J. Pan, B.J. Hwang, J. Power Sources, 2014, 253, 27-34. https://doi.org/10.1016/j.jpowsour.2013.12.037
- B. Chen, E. Liu, F. He, C. Shi, C. He, J. Li, N. Zhao, Nano Energy, 2016, 26, 541-549. https://doi.org/10.1016/j.nanoen.2016.06.003
- T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, E. Liu, J. Phys. Chem. C, 2017, 121(36), 19559-19567. https://doi.org/10.1021/acs.jpcc.7b04642
- Y. Lv, B. Chen, N. Zhao, C. Shi, C. He, J. Li, E. Liu, Surf. Sci., 2016, 651, 10-15. https://doi.org/10.1016/j.susc.2016.03.018
- J. Li, W. Xu, C. Guo, M. Li, L. Zhang, Electrochim. Acta, 2018, 276, 333-342. https://doi.org/10.1016/j.electacta.2018.04.183
- S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, J. Mater. Chem. A, 2015, 3(33), 17181-17189. https://doi.org/10.1039/C5TA03785A
- R. Zhang, X. Huang, D. Wang, T.K.A. Hoang, Y. Yang, X. Duan, P. Chen, L.C. Qin, G. Wen, Adv. Funct. Mater., 2018, 28(10), 1705817. https://doi.org/10.1002/adfm.201705817