Acknowledgement
이 연구는 2021년도 한국산업기술평가관리원의 연구비 지원에 의한 연구개발사업 결과의 일부임. 과제번호 : 20110616
References
- Alexander, K. M., Taplin, J. H., & Wardlaw, J. (1968). Correlation of strength and hydration with composition of Portland cement, Proceedings of the fifth International symposium on the chemistry of cement, Tokyo, 3, 86-91
- Bae, J. Y., & Jang, Y. I. (2012). An Experimental Study for Improving the Early Strength of Ternary Blended Cement Mortar, Journal of the Korean Society for Composite Materials, 25(4), 110-116 https://doi.org/10.7234/kscm.2012.25.4.110
- Beaudoin, J. J., & Ramachandran, V.S. (1992). A new perspective on the hydration characteristics of cement phases, Cement and Concrete Research, 22(4), 689-694. https://doi.org/10.1016/0008-8846(92)90021-M
- Bogue, R. H., & Lerch, W. (1934). Hydration of Portland cement compounds, Journal of Industrial and Engineering Chemistry, 26(8), 837-847 https://doi.org/10.1021/ie50296a007
- Chang, C. H., Lee, W. S., Jung, Y. W., & Chung, Y. I. (2017). Strength Properties of Concrete According to Types of High Early Strength Cement and Curing Method. Journal of the Korean Recycled Construction Resources Institute, 5(1), 76-84 https://doi.org/10.14190/JRCR.2017.5.1.076
- Han, C. G., Han, M. C., & Jeon, K. N. (2010). Strength Development of Fly ash Substituted Concrete due to Blast Furnace Slag Powder and Gypsum Addition, Journal of the Korean Recycled Construction Resources Institute, 5(2), 97-104
- KCA(Korean Cement Association), (2021), 2020 Korea Cement Industry
- Kim, Y. J., Kim, S. W., Park, C. W., & Sim, J. S. (2016). Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions, Journal of the Korean Recycled Construction Resources Institute, 4(1), 76-81 https://doi.org/10.14190/JRCR.2016.4.1.076
- Odler, I., & Abdul-Maula, S. (1987). Investigations on the relationship between porosity structure and strength of hydrated portland cement pastes III. Effect of clinker composition and gypsum addition, Cement and Concrete Research, 19(1), 22-30 https://doi.org/10.1016/0008-8846(87)90054-8
- Odler, I., & Wonnemann, R. (1983). Effect of alkalies on portland cement hydration: I. Alkali oxides incorporated into the crystalline lattice of clinker minerals, Cement and Concrete Research, 13(4), 477-482 https://doi.org/10.1016/0008-8846(83)90005-4
- Osbaeck, B., & Johansen, V. (1989). Particle size distribution and rate of strength development of Portland cement, Journal of American Ceramic Society, 72(2), 197-201 https://doi.org/10.1111/j.1151-2916.1989.tb06101.x
- Park, J. H., Ki, K. K., Lee, H. S., Kim, H. C., Choi, H. K., & Min, T. B. (2016). Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent, Journal of the Korea Institute of Building Construction, 405-412
- Sanitsky, M. A. (1992). Correlation Between the Crystal Structure of Calcium Minerals and their Reactivity with Water, International Congress on Chemistry of Cement, New Delhi, 292
- Schmitt-Henco, C. (1973). Effect of clinker composition on setting and early strength of cement, Zement-Kalk-Gips, 26(2), 63-66
- Schramli, W. (1978). An attempt to assess beneficial and detrimental effects of aluminate in cement on concrete performance, World Cement Technology, 9, 2-3.
- Soroka, I., & Relis, M. (1983). Effect of added gypsum on compressive strength of portland cement clinker, American Ceramic Society Bulletin, 62, 695-703
- Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation, Cement and Concrete Research, 31(5), 683-693 https://doi.org/10.1016/S0008-8846(01)00466-5
- Zhang, Y. M., & Napier-Munn, T. J. (1995). Effects of particle size distribution, surface area and chemical composition on Portland cement strength, Powder Technology, 95, 245-252 https://doi.org/10.1016/0032-5910(94)02964-P