DOI QR코드

DOI QR Code

RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean

  • 상완규 (농촌진흥청 국립식량과학원) ;
  • 백재경 (농촌진흥청 국립식량과학원) ;
  • 권동원 (농촌진흥청 국립식량과학원) ;
  • 조정일 (농촌진흥청 국립식량과학원)
  • Wan-Gyu, Sang (National Institute of Crop Science, Rural Development Administration) ;
  • Jae-Kyeong, Baek (National Institute of Crop Science, Rural Development Administration) ;
  • Dongwon, Kwon (National Institute of Crop Science, Rural Development Administration) ;
  • Jung-Il, Cho (National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2022.10.17
  • 심사 : 2022.12.26
  • 발행 : 2022.12.30

초록

기후변화에 따른 대기 온도 및 이산화탄소 농도의 상승은 농업 생산성에 큰 영향을 미칠 것으로 예상된다. RCP 8.5 시나리오에 따른 21세기말(2071~2100) 기후조건에서는 전 생육기간에 걸쳐 군락광합성이 크게 증가하였으나 이러한 효과가 종실 수량 증가로는 이어지지 않았다. 특히 높은 광합성능으로 인한 바이오매스의 증가는 분지 수 확보에 긍정적으로 작용하여 협수와 립수는 큰 변동이 없었던 반면 립중은 단독 고온 조건과 유사하게 현저히 감소하였다. 이는 등숙기간 중 고온에 의한 동화산물의 축적 및 전류 불량이 주요 요인으로 판단된다. 이러한 결과는 미래 기후 환경에서 종실 수량 감소가 협수와 립수 보다는 립중의 감소에 의한 것임을 의미한다. 이와 같은 결과들은 우리나라 남부지역에서 기후변화에 따른 콩 생육의 불확실성을 해소하고 피해 대책을 마련하기 위한 기초자료로써 유용하게 활용될 것으로 기대된다.

Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.

키워드

과제정보

본 논문은 농촌진흥청 국립식량과학원 농업과학기술 연구개발사업(과제 번호: PJ013574012020)의 지원에 의해 이루어진 것임.

참고문헌

  1. Baker, J., H. Allen, L. K. Boote, and N. Pickering, 1997: Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield. Global Change Biology 3(2), 119-128. https://doi.org/10.1046/j.1365-2486.1997.00058.x
  2. Boote, K. J., N. B. Pickering, and L. H. Allen, 1997: Plant Modeling: Advances and Gaps in Our Capability to Predict Future Crop Growth and Yield in Response to global Climate Change. Advances in Carbon Dioxide Effects Research. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, 179-228.
  3. Bowes, G., 1991: Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell & Environment 14(8), 795-806. https://doi.org/10.1111/j.1365-3040.1991.tb01443.x
  4. Connor, D., 2018: Climate change and global crop productivity. Crop Science 42(3), 978.
  5. Djanaguiraman, M., and P. V. V. Prasad, 2010: Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology 37(11), 1071-1084. https://doi.org/10.1071/FP10089
  6. Drake, B. G., M. A. Gonzalez-Meler, and S. P. Long, 1997: MORE EFFICIENT PLANTS: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48(1), 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609
  7. Egli, D. B., and I. F. Wardlaw, 1980: Temperature response of seed growth characteristics of soybeans. Agronomy Journal 72, 560-564. https://doi.org/10.2134/agronj1980.00021962007200030036x
  8. Fleisher, D. H., D. J. Timlin, and V. R. Reddy, 2008: Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agricultural and Forest Meteorology 148(6-7), 1109-1122. https://doi.org/10.1016/j.agrformet.2008.02.007
  9. Geethalakshmi, V., K. Bhuvaneswari, A. Lakshmanan, and N. U. Sekhar, 2017: Assessment of climate change impact on rice using controlled environment chamber in Tamil Nadu, India. Current Science 112(10), 2066-2072. https://doi.org/10.18520/cs/v112/i10/2066-2072
  10. Grimm, S. S., J. W. Jones, K. J. Boote, and D. C. Herzog, 1994: Modeling the occurrence of reproductive stages after flowering for four soybean cultivars. Agronomy Journal 86, 31-38. https://doi.org/10.2134/agronj1994.00021962008600010007x
  11. Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, and R. C. Izaurralde, 2011: Climate impacts on agriculture: Implications for crop production. Agronomy journal 103(2), 351-370. https://doi.org/10.2134/agronj2010.0303
  12. Hogan, K. P., A. P. Smith, and L. H. Ziska, 1991: Potential effects of elevated CO2 and changes in temperature on tropical plants. Plant, Cell & Environment 14(8), 763-778. https://doi.org/10.1111/j.1365-3040.1991.tb01441.x
  13. IPCC, 2014: Climate Change: Synthsis Report. Intergonernmental Panel on Climate Change, Geneva.
  14. Kimball, B. A., K. Kobayashi, and M. Bindi, 2002: Responses of Agricultural Crops to Free-Air CO2 Enrichment. Academic Press, 293-368.
  15. Kumagai, E., and R. Sameshima, 2014: Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agricultural and Forest Meteorology 198-199, 265-272. https://doi.org/10.1016/j.agrformet.2014.08.016
  16. Long, S. P., 1991: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment 14, 729-739. https://doi.org/10.1111/j.1365-3040.1991.tb01439.x
  17. Madhu, M., and J. L. Hatfield, 2016: Dry matter partitioning and growth analysis of soybean grown under elevated CO2 and soil moisture levels. Current Science 111(6), 981-984.
  18. Masuda, T., and P. D. Goldsmith, 2009: World soybean production: area harvested, yield, and long-term projections. International Food and Agribusiness Management Review 12(4), 143-162.
  19. Ohyama, T., R. Minagawa, S. Ishikawa, M. Yamamoto, N. V. P. Hung, N. Ohtake, K. Sueyoshi, T. Sato, Y. Nagumo, and Y. Takahasi, 2013: Soybean seed production and nitrogen nutrition. Intech, 13.
  20. Sang, W. G., J. H. Kim, P. Shin, J. K. Baek, Y. H. Lee, J. I. Cho, and M. C. Seo, 2019: Development of Korean SPAR (Soil-Plant-Atmosphere- Research) system for impact assessment of climate changes and environmental stress. Korean Journal of Agricultural and Forest Meteorology 21(3), 187-195. https://doi.org/10.5532/KJAFM.2019.21.3.187
  21. Vu, J. C. V, R. W. Gesch, A. H. Pennanen, L. Allen Hartwell, and K. J. Boote, 2001: Soybean photosynthesis, Rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2. Journal of Plant Physiology 158(3), 295-307. https://doi.org/10.1078/0176-1617-00290
  22. Whigham, D. K., and H. C. Minor, 1978: Agronomic characteristics and environmental stress. Soybean Agronomy, Physiology and Utilization. Geoffrey Norman, A. (Ed.), Academic Press, London, 247.
  23. Wheeler, T., and J. von Braun, 2013: Climate Change Impacts on Global Food Security. Science 341(6145), 508-513. https://doi.org/10.1126/science.1239402