Acknowledgement
The authors acknowledge the support of Bursa Uludag University Research Projects Department for this study (Project No. OUAP (MH)-2018/8).
References
- Abbasi, M., Soleymani, A.R. and Parssa, J.B. (2014), "Operation simulation of a recycled electrochemical ozone generator using artificial neural network", Chem. Eng. Res. Des., 92(11), 2618-2625. https://doi.org/10.1016/j.cherd.2014.02.027.
- Aydin, S., Aydin, M.E., Ulvi, A. and Kilic, H. (2018), "Determination of antibiotics by SPE-LC-MS/MS in wastewater and risk assessment", Adv. Environ. Res., 7(3), 201-212. http://doi.org/10.12989/aer.2019.7.3.201.
- Basiriparsa, J. and Abbasi, M. (2012), "High-efficiency ozone generation via electrochemical oxidation of water using Ti anode coated with Ni-Sb-SnO2", J. Solid State Electrochem., 16(3), 1011-1018. https://doi.org/10.1007/s10008-011-1440-6.
- Christensen, P., Lin, W., Christensen, H., Imkum, A., Jin, J., Li, G. and Dyson, C. (2009), "Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 M sulfuric acid at cell voltages< 3V", Ozone Sci. Eng., 31(4), 287-293. https://doi.org/10.1080/01919510903039309.
- Christensen, P., Zakaria, K. and Curtis, T. (2012), "Structure and activity of Ni-and Sb-doped SnO2 ozone anodes", Ozone Sci. Eng., 34(1), 49-56. https://doi.org/10.1080/01919512.2012.639687.
- Christensen, P.A., Zakaria, K., Christensen, H. and Yonar, T. (2013), "The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni", J. Electrochem. Soc., 160(8), H405-H413. https://doi.org/10.1149/2.023308JES.
- Cui, Y., Wang, Y., Wang, B., Zhou, H., Chan, K.-Y. and Li, X.-Y. (2009), "Electrochemical generation of ozone in a membrane electrode assembly cell with convective flow", J. Electrochem. Soc., 156(4), E75-E80. https://doi.org/10.1149/1.3072686.
- Deng, Y. and Englehardt, J.D. (2007), "Electrochemical oxidation for landfill leachate treatment", Waste Manage., 27(3), 380-388. https://doi.org/10.1016/j.wasman.2006.02.004.
- Federation, W.E. and Association, A.P.H. (2005), Standard methods for the examination of water and wastewater, Washington DC, U.S.A.
- Giraldo, A.L., Erazo-Erazo, E.D., Florez-Acosta, O.A., Serna-Galvis, E.A. and Torres-Palma, R.A. (2015), "Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic byproducts and effects of water matrix components", Chem. Eng. J., 279, 103-114. https://doi.org/10.1016/j.cej.2015.04.140.
- Goncalves, A.G., O rfao, J.J. and Pereira, M.F.R. (2012), "Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways", J. Hazard. Mater., 239, 167-174. https://doi.org/10.1016/j.jhazmat.2012.08.057.
- Isarain-Chavez, E., Baro, M.D., Rossinyol, E., Morales-Ortiz, U., Sort, J., Brillas, E. and Pellicer, E. (2017), "Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes", Electrochimica Acta, 244, 199-208 https://doi.org/10.1016/j.electacta.2017.05.101.
- Kurt, A. and Yonar, T. (2016), "Endokrin bozucu antibiyotik bilesiklerinin UV/H2O2 prosesi ile taguchi deneysel dizaynina gore aritilabilirligi", Afyon Kocatepe U niversitesi Fen Ve Muhendislik Bilimleri Dergisi, 17(2), 854-860. https://doi.org/10.5578/fmbd.57594.
- Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., 5(3), 215. https://doi.org/10.12989/anr.2017.5.3.215.
- Lin, H., Niu, J., Xu, J., Li, Y. and Pan, Y. (2013), "Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution", Electrochimica Acta, 97, 167-174. https://doi.org/10.1016/j.electacta.2013.03.019.
- Mompelat, S., Le Bot, B. and Thomas, O. (2009), "Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water", Environ. Int., 35 (5), 803-814. https://doi.org/10.1016/j.envint.2008.10.008.
- Parsa, J.B. and Abbasi, M. (2012), "Application of in situ electrochemically generated ozone for degradation of anthraquninone dye Reactive Blue 19", J. Appl. Electrochem., 42 (6), 435-442. https://doi.org/10.1007/s10800-012-0417-1
- Petrovic, M., Hernando, M.D., Diaz-Cruz, M.S. and Barcelo, D. (2005), "Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review", J. Chromatography A, 1067(1-2), 1-14. https://doi.org/10.1016/j.chroma.2004.10.110.
- Pillai, I.M.S. and Gupta, A.K. (2016), "Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol", J. Environ. Manage., 176, 45-53. https://doi.org/10.1016/j.jenvman.2016.03.021.
- Qian, S., Liu, S., Jiang, Z., Deng, D., Tang, B. and Zhang, J. (2019), "Electrochemical degradation of tetracycline antibiotics using a Ti/SnO2-Sb2O3/PbO2 anode: Kinetics, pathways, and biotoxicity change", J. Electrochem. Soc., 166(6), E192. https://orcid.org/0000-0003-1879-9378. https://doi.org/10.1149/2.1411906jes
- Shmychkova, O., Luk'yanenko, T., Dmitrikova, L. and Velichenko, A. (2019), "Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity", J. Serbian Chem. Soc., 84 (2), 187-198. https://doi.org/10.2298/JSC180712091S.
- Souza, F., Quijorna, S., Lanza, M.R.d.V., Saez, C., Canizares, P. and Rodrigo, M. (2017), "Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide", Catalysis Today, 280, 192-198. https://doi.org/10.1016/j.cattod.2016.04.030.
- Tran, N., Drogui, P., Nguyen, L. and Brar, S.K. (2016), "Electrooxidation-ultrasonication hybrid process for antibiotic chlortetracycline treatment", J. Environ. Eng., 142(5), 04016011. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001088.
- Trovo, A.G., Nogueira, R.F.P., Aguera, A., Fernandez-Alba, A.R. and Malato, S. (2011), "Degradation of the antibiotic amoxicillin by photo-Fenton process-chemical and toxicological assessment", Water Res., 45(3), 1394-1402. https://doi.org/10.1016/j.watres.2010.10.029.
- Vergili, I., Kaya, Y., Gonder, Z. and Barlas, H. (2005), "Ilac aktif maddelerinin sucul cevrede bulunuslari, davranislari ve etkileri", Turk Sucul Yasam Dergisi, 4, 284-291.
- Wang, J., Zhi, D., Zhou, H., He, X. and Zhang, D. (2018), "Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode", Water Res., 137, 324-334. https://doi.org/10.1016/j.watres.2018.03.030.
- Wang, Y.H. (2006), "Electrochemical generation of ozone on antimony and nickel doped tin oxide", Degree of Doctor of Philosophy, The university of Hong Kong, honk Kong.
- Weist, K. and Hogberg, L.D. (2016), "ECDC publishes 2015 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe", Eurosurveillance, 21(46). https://doi.org/10.2807/1560-7917.ES.2016.21.46.30399.
- Wirzal, M.D.H., Yusoff, A.R.M., Zima, J. and Barek, J. (2013), "Degradation of ampicillin and penicillin G using anodic oxidation", Int. J. Electrochem. Sci, 8, 8978-8988. https://doi.org/10.1016/S1452-3981(23)12943-9
- Yonar, T., Shakir, F. and Kurt, A. (2019), "Investigation of electrochemical color removal from organized industrial district (OID) wastewater treatment plants using new generation Sn/Sb/Ni-Ti anodes", Global Nest J., 21 (2), 106-112. https://doi.org/10.30955/gnj.002696.
- Zhi, D., Qin, J., Zhou, H., Wang, J. and Yang, S. (2017), "Removal of tetracycline by electrochemical oxidation using a Ti/SnO 2-Sb anode: Characterization, kinetics, and degradation pathway", J. Appl. Electrochem., 47(12), 1313-1322. https://doi.org/10.1007/s10800-017-1125-7.