DOI QR코드

DOI QR Code

Cable anomaly detection driven by spatiotemporal correlation dissimilarity measurements of bridge grouped cable forces

  • Dong-Hui, Yang (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Hai-Lun, Gu (School of Civil Engineering, Dalian University of Technology) ;
  • Ting-Hua, Yi (School of Civil Engineering, Dalian University of Technology) ;
  • Zhan-Jun, Wu (State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology)
  • Received : 2022.06.01
  • Accepted : 2022.09.06
  • Published : 2022.12.25

Abstract

Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.

Keywords

Acknowledgement

This research work was also jointly supported by the National Natural Science Foundation of China (Grants Nos. 52078102 and 52250011), the Fundamental Research Funds for the Central Universities (Grant No. DUT21JC38) and State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ20105). The authors would like to thank the organizers of the 1st International Project Competition for SHM (IPC-SHM, 2020) for providing the invaluable data used in this paper.

References

  1. Alcala, C.F. and Qin, S.J. (2011), "Analysis and generalization of fault diagnosis methods for process monitoring", J. Process Control, 21(3), 322-330. https://doi.org/10.1016/j.jprocont.2010.10.005
  2. Alamdari, M.M., Dang Khoa, N.L., Wang, Y., Samali, B. and Zhu, X. (2019), "A multi-way data analysis approach for structural health monitoring of a cable-stayed bridge", Struct. Health Monit.,18(1), 35-48. https://doi.org/10.1177/1475921718790727
  3. Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020), A summary and benchmark problem", Struct. Health Monit., 20(4), 2229-2239. https://doi.org/ 10.1177/14759217211006485
  4. Cho, S., Yim, J., Shin, S.W., Jung, H.J., Yun, C.B. and Wang, M.L. (2013), "Comparative field study of cable tension measurement for a cable-stayed bridge", J. Bridge Eng., 18(8), 748-757. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421
  5. Chu, F. and Ball, A. (2022), "Preface", J. Dyn. Monitor. Diagnost.,  1(1), 1. https://doi.org/10.37965/jdmd.2022.01
  6. Fan, Z.Y., Huang, Q., Ren, Y., Zhu, Z.Y. and Xu, X. (2020), "A cointegration approach for cable anomaly warning based on structural health monitoring data: An application to cable-stayed bridges", Adv. Struct. Eng., 23(13), 2789-2802. https://doi.org/10.1177/1369433220924793
  7. Feng, D., Scarangello, T., Feng, M.Q. and Ye, Q. (2017), "Cable tension force estimate using novel noncontact vision-based sensor", Measurement., 99, 44-52. https://doi.org/10.1016/j.measurement.2016.12.020
  8. Guo, W.H. and Xu, Y.L. (2001), "Fully computerized approach to study cable-stayed bridge-vehicle interaction", J. Sound Vib., 248(4), 745-761. https://doi.org/10.1006/jsvi.2001.3828
  9. Ho, H.N., Kim, K.D., Park, Y.S. and Lee, J.J. (2013), "An efficient image-based damage detection for cable surface in cable-stayed bridges", Ndt & E Int., 58, 18-23. https://doi.org 10.1016/j.ndteint.2013.04.006
  10. Hou, S., Dong, B., Fan, J., Wu, G., Wang, H., Han, Y. and Zhao, X. (2021), "Variational mode decomposition-based time-varying force identification of stay cables", Appl. Sci.-Basel., 11(3), 1254. https://doi.org/10.3390/app11031254
  11. Huang, H.B., Yi, T.H. and Li, H.N. (2016), "Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks", Smart Struct. Syst., Int. J., 17(6), 1031-1053. https://doi.org/10.12989/sss.2016.17.6.1031
  12. Jiang, Q. and Yan, X. (2014), "Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference", Chem. Intell. Lab. Syst., 136, 121-137. https://doi.org/10.1016/j.chemolab.2014.05.012
  13. Kim, S.W., Jeon, B.G., Kim, N.S. and Park, J.C. (2013), "Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge", Struct. Health Monit., 12(5-6), 440-456. https://doi.org/10.1177/1475921713500513
  14. Li, H. and Ou, J.P. (2016), "The state of the art in structural health monitoring of cable-stayed bridges", J. Civil Struct. Health Monit., 6(1), 43-67. https://doi.org/10.1007/s13349-015-0115-x
  15. Li, J., Hao, H. and Zhu, H.P. (2014), "Dynamic assessment of shear connectors in composite bridges with ambient vibration measurements". Adv. Struct. Eng., 17(5), 617-637. https://doi.org/10.1260/1369-4332.17.5.617
  16. Li, S., Wei, S., Bao, Y. and Li, H. (2018), "Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio", Eng. Struct.,155, 1-15. https://doi.org/10.1016/j.engstruct.2017.09.063.
  17. Nong, S.X., Yang, D.H. and Yi, T.H. (2021), "Pareto-based bi-objective optimization method of sensor placement in structural health monitoring", Buildings, 11(11), 549. https://doi.org/10.3390/buildings11110549
  18. Pan, H., Azimi, M., Yan, F. and Lin, Z. (2018), "Time-Frequency-Based Data-Driven Structural Diagnosis and Damage Detection for Cable-Stayed Bridges", J. Bridge Eng., 23(6), 04018033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199
  19. Peng, Z., Li, J. and Hao, H. (2022), "Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios", Smart Struct. Syst., Int. J., 29(1), 167-179. https:// doi.org/10.12989/sss.2022.29.1.167
  20. Ren, Y., Xu, X., Huang, Q., Zhao, D.Y. and Yang, J. (2019), "Long-term condition evaluation for stay cable systems using dead load-induced cable forces", Adv. Struct. Eng., 22(7), 1644-1656. https://doi.org/10.1177/1369433218824486
  21. Santos, J.P., Cremona, C., Orcesi, A.D. and Silveira, P. (2017), "Early Damage Detection Based on Pattern Recognition and Data Fusion", J. Struct. Eng., 143(2), 04016162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001643
  22. Sarmadi, H. and Karamodin, A. (2020), "A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects", Mech. Syst. Signal Proc., 140, 106495. https://doi.org/10.1016/j.ymssp.2019.106495
  23. Scarella, A., Salamone, G., Babanajad, S.K., De Stefano, A. and Ansari, F. (2017), "Dynamic Brillouin scattering-based condition assessment of cables in cable-stayed bridges", J. Bridge Eng., 22(3), 04016130. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001010
  24. Sousa Tome, E., Pimentel, M. and Figueiras, J. (2019), "Online early damage detection and localisation using multivariate data analysis: Application to a cable-stayed bridge", Struct. Control Health Monit., 26(11), e2434. https://doi.org/10.1002/stc.2434
  25. Son, H., Yoon, C., Kim, Y., Jang, Y., Tran, L.V., Kim, S.E. and Park, J. (2022), "Damaged cable detection with statistical analysis, clustering, and deep learning models", Smart Struct. Syst., Int. J., 29(1), 17-28. https://doi.org/10.12989/sss.2022.29.1.017
  26. Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 04020073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002535
  27. Tang, T., Yang, D.H., Wang, L., Zhang, J.R. and Yi, T.H. (2019), "Design and application of structural health monitoring system in long-span cable-membrane structure", Earthq. Eng. Eng. Vib., 18(2), 461-474. https://doi.org/10.1007/s11803-019-0484-y
  28. Tome, E.S., Pimentel, M. and Figueiras, J. (2020), "Damage detection under environmental and operational effects using cointegration analysis - Application to experimental data from a cable-stayed bridge", Mech. Syst. Signal Proc., 135, 106386. https://doi.org/10.1016/j.ymssp.2019.106386
  29. Verdier, G. and Ferreira, A. (2010), "Adaptive Mahalanobis distance and k-nearest neighbor rule for fault detection in semiconductor manufacturing", IEEE Trans. Semicond. Manuf., 24(1), 59-68. https://doi.org/10.1109/TSM.2010.2065531
  30. Xue, S. and Shen, R. (2020), "Real time cable force identification by short time sparse time domain algorithm with half wave", Measurement, 152, 107355. https://doi.org/10.1016/j.measurement.2019.107355
  31. Yang, D.H., Li, G.P., Yi, T.H. and Li, H.N. (2016), "A performance-based service life design method for reinforced concrete structures under chloride environment", Constr. Build. Mater., 124, 453-461. https://doi.org/10.1016/j.conbuildmat.2016.07.127
  32. Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018a), "Correlation-based estimation method for cable-stayed bridge girder deflection variability under thermal action", J. Perform. Constr. Facil., 32(5), 04018070. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001212
  33. Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018b), "Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge", Measurement, 115, 249-257. https://doi.org/10.1016/j.measurement.2017.10.036
  34. Yang, D.H., Guan, Z.X., Yi, T.H., Li, H.N. and Ni, Y.S. (2022), "Fatigue Evaluation of Bridges Based on Strain Influence Line Loaded by Elaborate Stochastic Traffic Flow", J. Bridge Eng., 27(9), 04022082. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001929
  35. Zhang, L., Qiu, G. and Chen, Z. (2021), "Structural health monitoring methods of cables in cable-stayed bridge, A review", Measurement, 168, 108343. https://doi.org/10.1016/j.measurement.2020.108343