DOI QR코드

DOI QR Code

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng (School of Civil, Environmental & Mining Engineering, The University of Adelaide) ;
  • Carman, Yeung (School of Civil, Environmental & Mining Engineering, The University of Adelaide) ;
  • Tingyuan, Yin (School of Civil, Environmental & Mining Engineering, The University of Adelaide) ;
  • Liujie, Chen (School of Civil Engineering, Guangzhou University)
  • Received : 2022.04.19
  • Accepted : 2022.10.20
  • Published : 2022.12.25

Abstract

This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Keywords

Acknowledgement

This work was supported by the Australian Research Council through DP200102300 and DP210103307. The support is greatly appreciated.

References

  1. Allen, J.C.P. and Ng, C.T. (2022), "Debonding detection at adhesive joints using nonlinear Lamb waves mixing", NDT & E Int., 125, 102552. https://doi.org/10.1016/j.ndteint.2021.102552
  2. Bartoli, I., Phillips, R., Coccia, S., Srivastava, A., di Scalea, F.L., Fateh, M. and Carr, G. (2010), "Stress dependence of ultrasonic guided waves in rails", Transp. Res. Rec., 2159(1), 91-97. https://doi.org/10.3141/2159-12
  3. Biot, M.A. (1940), "The influence of initial stress on elastic waves", J. Appl. Phys., 11(8), 522-530. https://doi.org/10.1063/1.1712807
  4. Cawley, P. and Alleyne, D. (1996), "The use of Lamb waves for the long range inspection of large structures", Ultrasonics, 34(2-5), 287-290. https://doi.org/10.1016/0041-624x(96)00024-8
  5. Chaki, S. and Bourse, G. (2009), "Stress level measurement in prestressed steel strands using acoustoelastic effect", Exp. Mech., 49(5), 673-681. https://doi.org/10.1007/s11340-008-9174-9
  6. Chen, J., Fang, H. and Chan, T.-M. (2021), "Design of fixed-ended octagonal shaped steel hollow sections in compression", Eng. Struct., 228, 111520. https://doi.org/10.1016/j.engstruct.2020.111520
  7. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W. and Nagy, P.B. (2009), "The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue", J. Acoust. Soc. Am., 126(5), EL117-EL122. https://doi.org/10.1121/1.3231451
  8. Deng, M., Gao, G., Xiang, Y. and Li, M. (2017), "Assessment of accumulated damage in circular tubes using nonlinear circumferential guided wave approach: a feasibility study", Ultrasonics, 75, 209-215. https://doi.org/10.1016/j.ultras.2016.12.001
  9. Dubuc, B., Ebrahimkhanlou, A. and Salamone, S. (2017), "Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes", Ultrasonics, 75, 145-154. https://doi.org/10.1016/j.ultras.2016.11.013
  10. Dubuc, B., Ebrahimkhanlou, A. and Salamone, S. (2020), "Stress monitoring of prestressing strands in corrosive environments using modulated higher-order guided ultrasonic waves", Struct. Health Monit., 19(1), 202-214. https://doi.org/10.1177/1475921719842385
  11. Fang, H., Chan, T.-M. and Young, B. (2018), "Structural performance of cold-formed high strength steel tubular columns", Eng. Struct., 177, 473-488. https://doi.org/10.1016/j.engstruct.2018.09.082
  12. Hasanian, M. and Lissenden, C.J. (2017), "Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results", J. Appl. Phys., 122(8), 084901. https://doi.org/10.1063/1.4993924
  13. Hasanian, M. and Lissenden, C.J. (2018), "Second order ultrasonic guided wave mutual interactions in plate: Arbitrary angles, internal resonance, and finite interaction region", J. Appl. Phys., 124(16), 164904. https://doi.org/10.1063/1.5048227
  14. Hirao, M., Fukuoka, H. and Hori, K. (1981), "Acoustoelastic effect of Rayleigh surface wave in isotropic material", J. Appl. Mech.-Transact. ASME, 48(1), 119-124. https://doi.org/10.1115/1.3157553
  15. Hughes, J.M., Vidler, J., Ng, C.-T., Khanna, A., Mohabuth, M., Rose, L.F. and Kotousov, A. (2019), "Comparative evaluation of in situ stress monitoring with Rayleigh waves", Struct. Health Monit., 18(1), 205-215. https://doi.org/10.1177/1475921718798146
  16. Kamyshev, A., Nikitina, N. and Smirnov, V. (2010), "Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method", Russ. J. Nondestruct. Test., 46(3), 189-193. https://doi.org/10.1134/S106183091003006x
  17. Li, G.-Y., He, Q., Mangan, R., Xu, G., Mo, C., Luo, J., Destrade, M. and Cao, Y. (2017), "Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials", J. Mech. Phys. Solids, 102, 67-79. https://doi.org/10.1016/j.jmps.2017.02.008
  18. Li, F., Zhao, Y., Cao, P. and Hu, N. (2018), "Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity", Ultrasonics, 87, 33-43. https://doi.org/10.1016/j.ultras.2018.02.005
  19. Li, Z., He, J., Teng, J., Huang, Q. and Wang, Y. (2019), "Absolute stress measurement of structural steel members with ultrasonic shear-wave spectral analysis method", Struct. Health Monit., 18(1), 216-231. https://doi.org/10.1177/1475921717746952
  20. Liu, M., Tang, G., Jacobs, L.J. and Qu, J. (2012), "Measuring acoustic nonlinearity parameter using collinear wave mixing", J. Appl. Phys., 112(2), 024908. https://doi.org/10.1063/1.4739746
  21. Liu, Y., Khajeh, E., Lissenden, C.J. and Rose, J.L. (2013), "Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders", J. Acoust. Soc. Am., 133(5), 2541-2553. https://doi.org/10.1121/1.4795806
  22. Lovstad, A. and Cawley, P. (2011), "The reflection of the fundamental torsional guided wave from multiple circular holes in pipes", NDT & E Int., 44(7), 553-562. https://doi.org/10.1016/j.ndteint.2011.05.010
  23. Lu, W., Peng, L. and Holland, S. (1998), Measurement of acoustoelastic effect of Rayleigh surface waves using laser ultrasonics in Review of Progress in Quantitative Nonestructive Evaluation, Springer, pp. 1643-1648.
  24. McGovern, M., Buttlar, W. and Reis, H. (2014), "Characterisation of oxidative ageing in asphalt concrete using a non-collinear ultrasonic wave mixing approach", Insight: Non-Destr. Test. Cond. Monit., 56(7), 367-374. https://doi.org/10.1784/insi.2014.56.7.367
  25. McGovern, M., Buttlar, W. and Reis, H. (2015), "Estimation of oxidative ageing in asphalt concrete pavements using non collinear wave mixing of critically-refracted longitudinal waves", Insight: Non-Destr. Test. Cond. Monit., 57(1), 25-34. https://doi.org/10.1784/insi.2014.57.1.25
  26. Mohabuth, M., Kotousov, A. and Ng, C.-T. (2016), "Effect of uniaxial stress on the propagation of higher-order Lamb wave modes", Int. J. Non-Linear Mech., 86, 104-111. https://doi.org/10.1016/j.ijnonlinmec.2016.08.006
  27. Murnaghan, F.D. (1937), "Finite deformations of an elastic solid", Am. J. Math., 59(2), 235-260. https://doi.org/10.2307/2371405
  28. Nasim Khan Raja, B., Miramini, S., Duffield, C., Chen, S. and Zhang, L. (2021), "A Simplified Methodology for Condition Assessment of Bridge Bearings Using Vibration Based Structural Health Monitoring Techniques", Int. J. Struct. Stabil. Dyn., 21(10), 2150133. https://doi.org/https://doi.org/10.1142/S0219455421501339
  29. Nikitina, N.Y., Kamyshev, A. and Kazachek, S. (2009), "Application of the acoustoelasticity phenomenon in studying stress states in technological pipelines", Russ. J. Nondestruct. Test., 45(12), 861-866. https://doi.org/10.1134/S1061830909120043
  30. Ogden, R.W. (2007), Incremental statics and dynamics of prestressed elastic materials in Waves in nonlinear pre-stressed materials, Springer, pp. 1-26.
  31. Pattanayak, R.K., Manogharan, P., Balasubramaniam, K. and Rajagopal, P. (2015), "Low frequency axisymmetric longitudinal guided waves in eccentric annular cylinders", J. Acoust. Soc. Am., 137(6), 3253-3262. https://doi.org/10.1121/1.4921269
  32. Pau, A. and Lanza di Scalea, F. (2015), "Nonlinear guided wave propagation in prestressed plates", J. Acoust. Soc. Am., 137(3), 1529-1540. https://doi.org/10.1121/1.4908237
  33. Shams, M., Destrade, M. and Ogden, R.W. (2011), "Initial stresses in elastic solids: constitutive laws and acoustoelasticity", Wave Motion, 48(7), 552-567. https://doi.org/10.1016/j.wavemoti.2011.04.004
  34. Shan, S., Hasanian, M., Cho, H., Lissenden, C.J. and Cheng, L. (2019), "New nonlinear ultrasonic method for material characterization: Codirectional shear horizontal guided wave mixing in plate", Ultrasonics, 96, 64-74. https://doi.org/10.1016/j.ultras.2019.04.001
  35. Smith, M. (2009), ABAQUS/Standard User's Manual, Version 6.9. [available online]
  36. Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K. and Derriso, M. (2014), "Nonlinear ultrasonic wave modulation for online fatigue crack detection", J. Sound Vib., 333(5), 1473-1484. https://doi.org/10.1016/j.jsv.2013.10.032
  37. Yang, Y., Ng, C.-T. and Kotousov, A. (2018), "Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves", Smart Mater. Struct., 27(5), 055013. https://doi.org/10.1088/1361-665X/aab867
  38. Yang, Y., Ng, C.-T. and Kotousov, A. (2019a), "Second-order harmonic generation of Lamb wave in prestressed plates", J. Sound Vib., 460, 114903. https://doi.org/10.1016/j.jsv.2019.114903
  39. Yang, Y., Ng, C.T., Mohabuth, M. and Kotousov, A. (2019b), "Finite element prediction of acoustoelastic effect associated with Lamb wave propagation in pre-stressed plates", Smart Mater. Struct., 28(9), 095007. https://doi.org/10.1088/1361-665X/ab2dd3
  40. Yeung, C. and Ng, C.T. (2019), "Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes", Mech. Syst. Signal Process., 128, 305-317. https://doi.org/10.1016/j.ymssp.2019.04.013
  41. Yeung, C. and Ng, C.T. (2020), "Nonlinear guided wave mixing in pipes for detection of material nonlinearity", J. Sound Vib., 485, 115541. https://doi.org/10.1016/j.jsv.2020.115541
  42. Yin, T., Ng, C.-T. and Kotousov, A. (2021), "Damage detection of ultra-high-performance fibre-reinforced concrete using a harmonic wave modulation technique", Constr. Build. Mater., 313, 125306. https://doi.org/10.1016/j.conbuildmat.2021.125306
  43. Zhang, L.H., Maizuar, M., Mendis, P., Duffield, C. and Thompson, R. (2016), "Monitoring the dynamic behaviour of concrete bridges using non-contact sensors (IBIS-S)", Appl. Mech. Mater., 846, 225-230. https://doi.org/10.4028/www.scientific.net/AMM.846.225