DOI QR코드

DOI QR Code

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu (Department of Mechanical Engineering, University of Canterbury) ;
  • Shao-Dong, Shen (Disaster Prevention Research Institute, Kyoto University)
  • Received : 2022.05.12
  • Accepted : 2022.09.25
  • Published : 2022.12.25

Abstract

Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Keywords

Acknowledgement

The authors are grateful for financial support from Japan Society for the Promotion of Science (Grant No. P22371), and the financial support provided by a Rutherford Discovery Fellowship.

References

  1. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.W., Kottke, A.R., Boore, D.M. and Kishida, T. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193/070913EQS197M
  2. Bedrinana, L.A., Tani, M. and Nishiyama, M. (2021), "Deformation and cyclic buckling capacity of external replaceable hysteretic dampers for unbonded post-tensioned precast concrete walls", Eng. Struct., 235, p. 112045. https://doi.org/10.1016/j.engstruct.2021.112045
  3. Blandon, C.A. and Priestley, M.J.N. (2005), "Equivalent viscous damping equations for direct displacement based design", J. Earthq. Eng., 9(sup2), 257-278. https://doi.org/10.1142/S1363246905002390
  4. Erkmen, B. and Schultz, A.E. (2009), "Self-centering behavior of unbonded, post-tensioned precast concrete shear walls", J. Earthq. Eng., 13(7), 1047-1064. https://doi.org/10.1080/13632460902859136
  5. European Standard EN (Eurocode 8 1998-1). (2005), Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings, Bruxelles, European Committee for Standardization (CEN).
  6. Gu, A., Zhou, Y., Xiao, Y., Li, Q. and Qu, G. (2019), "Experimental study and parameter analysis on the seismic performance of self-centering hybrid reinforced concrete shear walls", Soil Dyn. Earthq. Eng., 116, 409-420. https://doi.org/10.1016/j.soildyn.2018.10.003
  7. Gu, A., Zhou, Y., Henry, R.S., Lu, Y. and Rodgers, G.W. (2022), "Simulation of shake-table test for a two-story low-damage concrete wall building", Struct. Control Health Monitor., 29(10), p. e3038. https://doi.org/10.1002/stc.3038
  8. Holden, T., Restrepo, J. and Mander, J.B. (2003), "Seismic performance of precast reinforced and prestressed concrete walls", J. Struct. Eng., 129(3), 286-296. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286)
  9. Huang, H.B., Yi, T.H., Li, H.N. and Liu, H. (2020), "Strain-based performance warning method for bridge main girders under variable operating conditions", J. Bridge Eng., 25(4), 04020013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001538
  10. Jacobsen, L.S. (1930), "Steady forced vibration as influenced by damping", Transact. ASME, 52(15), 169-181.
  11. Jacobsen, L.S. (1960), "Damping in composite structures", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan.
  12. Kurama, Y., Pessiki, S., Sause, R. and Lu, L.W. (1999), "Seismic behavior and design of unbonded post-tensioned precast concrete walls", PCI J., 44(3), 72-89. https://doi.org/10.15554/pcij.05011999.72.89
  13. Liu, R., McHaffie, B. and Palermo, A. (2018), "Improving posttensioned rocking bridge columns for large and multiple earthquake events", The 17th US-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience, Queenstown, New Zealand.
  14. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center, 264(1), 137-158.
  15. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  16. Miranda, E. and Ruiz-Garcia, J. (2002), "Evaluation of the approximate methods to estimate maximum inelastic displacement demands", Earthq. Eng. Struct. Dyn., 31(3), 539-560. https://doi.org/10.1002/eqe.143
  17. Nagae, T., Matsumori, T., Shiohara, H., Kabeyasawa, T., Kono, S., Nishiyama, M., Moehle, J., Wallace, J., Sause, R. and Ghannoum, W. (2014), "The 2010 E-defense shaking table test on four-story reinforced concrete and post-tensioned concrete buildings", Proceedings of the 10th US National Conference on Earthquake Engineering (NCEE), Frontiers of Earthquake Engineering, Anchorage, Alaska, USA.
  18. Pampanin, S., Priestley, M.N. and Sritharan, S. (2001), "Analytical modelling of the seismic behaviour of precast concrete frames designed with ductile connections", J. Earthq. Eng., 5(3), 329-367. https://doi.org/10.1080/13632460109350397
  19. Pampanin, S., Marriott, D. and Palermo, A. (2010), "PRESSS design handbook", Auckland, New Zealand, New Zealand Concrete Society.
  20. Pennucci, D., Calvi, G.M. and Sullivan, T.J. (2009), "Displacement-based design of precast walls with additional dampers", J. Earthq. Eng., 13(S1), 40-65. https://doi.org/10.1080/13632460902813265
  21. Perez, F.J., Sause, R. and Pessiki, S. (2007), "Analytical and experimental lateral load behavior of unbonded posttensioned precast concrete walls", J. Struct. Eng., 133(11), 1531-1540. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1531)
  22. PRC National Standard (GB 50010-2010) (2010a), Code for design of concrete structures, China Architecture & Building Press, Beijing, China. [In Chinese]
  23. PRC National Standard (GB 50011-2010) (2010b), Code for seismic design of buildings, China Architecture & Building Press, Beijing, China. [In Chinese]
  24. Priestley, M.N. (2002), "Direct displacement-based design of precast/prestressed concrete buildings", PCI J., 47(6), 66-79. https://doi.org/10.15554/pcij.11012002.66.79
  25. Priestley, M.N. (2003), "Myths and fallacies in earthquake engineering, revisited: The ninth mallet Milne lecture", Pavia, Italy, IUSS press.
  26. Priestley, M.J.N., Calvi, G.M. and Kowalsky, M.J. (2007), "Direct displacement-based seismic design of structures", In: New Zealand Conference on Earthquake Engineering, Auckland, New Zealand.
  27. Rahman, M.A. and Sritharan, S. (2006), "An evaluation of force-based design vs. direct displacement-based design of jointed precast post-tensioned wall systems", Earthq. Eng. Eng. Vib., 5(2), 285-296. https://doi.org/10.1007/s11803-006-0620-3
  28. Restrepo, J.I. and Rahman, A. (2007), "Seismic performance of self-centering structural walls incorporating energy dissipators", J. Struct. Eng., 133(11), 1560-1570. https://doi.org/10.1061/(asce)0733-9445(2007)133:11(1560)
  29. Rosenblueth, E. and Herrera, I. (1964), "On a kind of hysteretic damping", J. Eng. Mech. Div., 90(4), 37-48. https://doi.org/10.1061/JMCEA3.0000510
  30. Smith, B.J., Kurama, Y.C. and McGinnis, M.J. (2011), "Design and measured behavior of a hybrid precast concrete wall specimen for seismic regions", J. Struct. Eng, 137(10), 1052-1062. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000327
  31. Van der Meer, L.J., Martens, D.R.W. and Vermeltfoort, A.T. (2013), "UPT rectangular and flanged shear walls of high-strength CASIEL-TLM masonry: Experimental and numerical push-over analysis", Eng. Struct., 49, 628-642. https://doi.org/10.1016/j.engstruct.2012.11.021
  32. Watkins, J., Sritharan, S., Nagae, T. and Henry, R.S. (2017), "Computational modelling of a four storey post-tensioned concrete building subjected to shake table testing", Bull. New Zealand Soc. Earthq. Eng., 50(4), 595-607. https://doi.org/10.5459/bnzsee.50.4.595-607
  33. Wiebe, L. and Christopoulos, C. (2009), "Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections", J. Earthq. Eng., 13(S1), 83-108. https://doi.org/10.1080/13632460902813315
  34. Zheng, X., Yi, T.H., Yang, D.H. and Li, H.N. (2021), "Stiffness estimation of girder bridges using influence lines identified from vehicle-induced structural responses", J. Eng. Mech., 147(8), 04021042. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001942