Acknowledgement
We thank the reviewers for their constructive comments on this research work. This work is supported by the National Key R&D Program of China No. 2018YFB2101003, the National Natural Science Foundation of China under Grant No. 51991395, U1806226, 51778033, 51822802, 71901011, U1811463, 51991391, the Science and Technology Major Project of Beijing under Grant No. Z191100002519012.
References
- Cao, B.T., Obel, M., Freitag, S., Mark, P. and Meschke, G. (2020), "Artificial neural network surrogate modelling for real-time predictions and control of building damage during mechanised tunnelling", Adv. Eng. Software, 149, 102869. https://doi.org/10.1016/j.advengsoft.2020.102869
- Carbonneau, R., Laframboise, K. and Vahidov, R. (2008), "Application of machine learning techniques for supply chain demand forecasting", Eur. J. Operat. Res., 184(3), 1140-1154. https://doi.org/10.1016/j.ejor.2006.12.004
- Chen, T., Yin, H., Chen, H., Wu, L., Wang, H., Zhou, X. and Li, X. (2018), "Tada: trend alignment with dualattention multi-task recurrent neural networks for sales prediction", Proceedings of 2018 IEEE International Conference on Data Mining (ICDM), Singapore, November, pp. 49-58. https://doi.org/10.1109/ICDM.2018.00020
- Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic Burger's material under hydrostatic stress field", Tunnell. Undergr. Space Technol., 25(4), 297-304. https://doi.org/10.1016/j.tust.2010.01.002
- Farahani, R.V. and Penumadu, D. (2016), "Full-scale bridge damage identification using time series analysis of a dense array of geophones excited by drop weight", Struct. Control Health Monitor., 23(7), 982-997. https://doi.org/10.1002/stc.1820
- Hou, L. and Qu, H. (2021), "Automatic recognition system of pointer meters based on lightweight CNN and WSNs with on-sensor image processing", Measurement, 183, p. 109819. https://doi.org/10.1016/j.measurement.2021.109819
- Lin, S.W., Yi, T.H., Li, H.N. and Ren, L. (2017), "Damage detection in the cable structures of a bridge using the virtual distortion method", J. Bridge Eng., 22(8), 04017039. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001072
- Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using artificial neural networks", Tunnell. Undergr. Space Technol., 28, 218-228. https://doi.org/10.1016/j.tust.2011.11.002
- Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Faraj, R.H., Omer, R.M.D. and Sherwani, A.F.H. (2020), "Decision-making in tunneling using artificial intelligence tools", Tunnell. Undergr. Space Technol., 103, 103514. https://doi.org/10.1016/j.tust.2020.103514
- Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Rashid, T.A., Aldalwie, A.H.M., Ali, H.F.H. and Daraei, A. (2021), "Tunnel geomechanical parameters prediction using Gaussian process regression", Mach. Learn. Applicat., 3, 100020. https://doi.org/10.1016/j.mlwa.2021.100020
- Mei, L., Mita, A. and Zhou, J. (2016), "An improved substructural damage detection approach of shear structure based on ARMAX model residual", Struct. Control Health Monitor., 23(2), 218-236. https://doi.org/10.1002/stc.1766
- Prakash, G., Sadhu, A., Narasimhan, S. and Brehe, J.M. (2018), "Initial service life data towards structural health monitoring of a concrete arch dam", Struct. Control Health Monitor., 25(1), e2036. https://doi.org/10.1002/stc.2036
- Sajedi, S.O. and Liang, X. (2020), "A data-driven framework for near real-time and robust damage diagnosis of building structures", Struct. Control Health Monitor., 27(3), e2488. https://doi.org/10.1002/stc.2488
- Shahrour, I., Bian, H., Xie, X. and Zhang, Z. (2020), "Smart technology applications for the optimal management of underground facilities", Undergr. Space, 6(5), 551-559. https://doi.org/10.1016/j.undsp.2020.12.002
- Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunnell. Undergr. Space Technol., 38, 348-356. https://doi.org/10.1016/j.tust.2013.07.014
- Spencer Jr, B., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
- Sterpi, D. and Gioda, G. (2009), "Visco-plastic behaviour around advancing tunnels in squeezing rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8
- Tan, X., Chen, W., Wang, L., Tan, X. and Yang, J. (2020a), "Integrated approach for structural stability evaluation using real-time monitoring and statistical analysis: Underwater shield tunnel case study", J. Perform. Constr. Facil., 34(2), 04019118. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001391
- Tan, X., Chen, W., Wu, G., Wang, L. and Yang, J. (2020b), "A structural health monitoring system for data analysis of segment joint opening in an underwater shield tunnel", Struct. Health Monitor., 19(4), 1032-1050. https://doi.org/10.1177/1475921719876045
- Wang, Y. and Ni, Y. (2020), "Bayesian dynamic forecasting of structural strain response using structural health monitoring data", Struct. Control Health Monitor., 27(8), e2575. https://doi.org/10.1002/stc.2575
- Xu, Y., Li, D., Xie, Q., Wu, Q. and Wang, J. (2021), "Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN", Measurement, 178, 109316. https://doi.org/10.1016/j.measurement.2021.109316
- Yu, A., Mei, W. and Han, M. (2021), "Deep learning based method of longitudinal dislocation detection for metro shield tunnel segment", Tunnell. Undergr. Space Technol., 113, 103949. https://doi.org/10.1016/j.tust.2021.103949
- Zheng, X., Yi, T.H., Yang, D.H. and Li, H.N. (2021), "Stiffness estimation of girder bridges using influence lines identified from vehicle-induced structural responses", J. Eng. Mech., 147(8), 04021042. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001942
- Zhu, H., Wang, X., Chen, X. and Zhang, L. (2020), "Similarity search and performance prediction of shield tunnels in operation through time series data mining", Automat. Constr., 114, 103178. https://doi.org/10.1016/j.autcon.2020.103178