Acknowledgement
This work is funded by the Science and Technology Development Fund, Macau SAR under Research Grant SKL-IOTSC(UM)-2021-2023 and 0094/2021/A2, the Research Committee of University of Macau under Research Grant MYRG2018-00048-AAO and SRG2021-00006-FST, and the Guangdong-Hong Kong-Macau Joint Laboratory Program under Grant 2020B1212030009. These generous supports are gratefully acknowledged.
References
- Akkaya, K., Younis, M. and Youssef, W. (2007), "Positioning of base stations in wireless sensor networks", IEEE. Commun. Mag., 45(4), 96-102. https://doi.org/10.1109/MCOM.2007.343618
- Al-Turjman, F.M. (2018), "Optimized hexagon-based deployment for large-scale ubiquitous sensor networks", J. Netw. Syst. Manag., 26(2), 255-283. https://doi.org/10.1007/s10922-017-9415-2
- Al-Turjman, F.M., Hassanein, H.S. and Ibnkahla, M. (2015), "Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring", Ad. Hoc. Netw., 24, 172-185. https://doi.org/10.1016/j.adhoc.2014.08.017
- Argyris, C., Papadimitriou, C. and Panetsos, P. (2017), "Bayesian optimal sensor placement for modal identification of civil infrastructures", J. Smart Cities., 2(2), 69-86. http://dx.doi.org/10.26789/JSC.2016.02.001
- Argyris, C., Chowdhury, S., Zabel, V. and Papadimitriou, C. (2018), "Bayesian optimal sensor placement for crack identification in structures using strain measurements", Struct. Control. Health. Monit., 25(5), e2137. https://doi.org/10.1002/stc.2137
- Bhuiyan, M.Z.A. and Cao, J.N. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE Trans. Comput., 64, 382-395. https://doi.org/10.1109/TC.2013.195
- Casciati, F. and Fuggini, C. (2011), "Monitoring a steel building using GPS sensors", Smart Struct. Syst., Int. J., 7(5), 349-363. https://doi.org/10.12989/sss.2011.7.5.349
- Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer Jr, B.F. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", Steel Struct., 8, 267-275. www.ijoss.org
- El-Qawasma, F.A., Elfouly, T.M. and Ahmed, M.H. (2019), "Minimising number of sensors in wireless sensor networks for structure health monitoring systems", IET. Wireless. Sensor Syst., 9(2), 94-101. https://doi.org/10.1049/iet-wss.2018.5031
- Elsersy, M., Elfouly, T.M. and Ahmed, M.H. (2016), "Joint optimal placement, routing, and flow assignment in wireless sensor networks for structural health monitoring", IEEE Sensors. J., 16(12), 5095-5106. https://doi.org/10.1109/JSEN.2016.2554462
- Fang, K., Liu, C. and Teng, J. (2018), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health. Monit., 17(2), 266-278. https://doi.org/10.1177/1475921717689967
- Fu, T.S., Ghosh, A., Johnson, E.A. and Krishnamachari, B. (2013), "Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks", Struct. Control. Health. Monit., 20(6), 971-986. https://doi.org/10.1002/stc.1510
- Geoffrine, J.M.C. and Geetha, V. (2019), "Energy optimization with higher information quality for SHM application in wireless sensor networks", IEEE Sensors J., 19(9), 3513-3520. https://doi.org/10.1109/JSEN.2019.2892870
- Gul, M. and Catbas, F.N. (2011), "Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering", J. Sound Vib., 330(6), 1196-1210. https://doi.org/10.1016/j.jsv.2010.09.024
- Heinzelman, W.B., Chandrakasan, A.P. and Balakrishnan, H. (2002), "An application-specific protocol architecture for wireless microsensor networks", IEEE. Trans. Wirel. Commun., 1, 660-670. https://doi.org/10.1109/TWC.2002.804190
- Heredia-Zavoni, E. and Esteva, L. (1998), "Optimal instrumentation of uncertain structural systems subject to earthquake motions", Earthq. Eng. Struct. Dyn., 27(4), 343-362. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343:AID-EQE726>3.0.CO;2-F
- Jalsan, K.E., Rohan, N.S. and Flouri, K. (2014), "Layout optimization of wireless sensor networks for structural health monitoring", Smart Struct. Syst., Int. J., 14(1), 39-54. https://doi.org/10.12989/sss.2014.14.1.039
- Jung, H.J., Kim I.H. and Jang, S.J. (2011), "An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node", Smart. Mater. Struct., 20(7), 075001. http://dx.doi.org/10.1088/0964-1726/20/7/075001
- Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dyn., 14(2), 251-259. https://doi.org/10.2514/3.20635
- Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. Dyn., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53
- Kuok, S.C. and Yuen, K.V. (2016), "Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework", Smart Struct. Syst., Int. J., 17(3), 445-470. http://dx.doi.org/10.12989/sss.2016.17.3.445
- Kurata, N., Spencer Jr, B.F. and Ruiz-Sandoval, M. (2005), "Risk monitoring of buildings with wireless sensor networks", Struct. Control. Health. Monit., 12, 315-327. https://doi.org/10.1002/stc.73
- Lam, H.F. and Adeagbo, M.O. (2022), "An enhanced sequential sensor optimization scheme and its application in the system identification of a rail-sleeper-ballast system", Mech. Syst. Signal. Process., 163, 108188. https://doi.org/10.1016/j.ymssp.2021.108188
- Lam, H.F., Yuen, K.V. and Beck, J.L. (2006), "Structural health monitoring via measured Ritz vectors utilizing artificial neural networks", Comput. Aided. Civil Inf. Eng., 21(4), 232-241. https://doi.org/10.1111/j.1467-8667.2006.00431.x
- Lam, H.F., Wong, M.T. and Yang, Y.B. (2012), "A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper", Eng. Struct., 45, 284-298. https://doi.org/10.1016/j.engstruct.2012.06.022
- Lam, H.F., Alabi, S.A. and Yang, J.H. (2017), "Identification of rail-sleeper-ballast system through time-domain Markov chain Monte Carlo-based Bayesian approach", Eng. Struct., 140, 421-436. https://doi.org/10.1016/j.engstruct.2017.03.001
- Lam, H.F., Yang, J.H. and Au, S.K. (2018), "Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection", Struct. Control. Health. Monit., 25(4), e2140. https://doi.org/10.1002/stc.2140
- Lei, Y., Shen, W.A., Song, Y. and Wang, Y. (2010), "Intelligent wireless sensors with application to the identification of structural modal parameters and steel cable forces: from the lab to the field", Adv. Civil Eng., 2010, 1-9. https://doi.org/10.1155/2010/316023
- Lei, Y., Chen, F. and Zhou, H. (2015), "An algorithm based on two-step Kalman filter for intelligent structural damage detection", Struct. Control. Health. Monit., 22(4), 694-706. https://doi.org/10.1002/stc.1712
- Lei, Y., Yang, N. and Xia, D.D. (2017), "Probabilistic structural damage detection approaches based on structural dynamic response moments", Smart Struct. Syst., Int. J., 20(2), 207-217. https://doi.org/10.12989/sss.2017.20.2.207
- Lei, Y., Lu, J.B. and Huang, J.S. (2020), "Synthesize identification and control for smart structures with time-varying parameters under unknown earthquake excitation", Struct. Control. Health. Monit., 27(4), e2512. https://doi.org/10.1002/stc.2512
- Li, B., Wang, D., Wang, F. and Ni, Y.Q. (2010), "High quality sensor placement for SHM systems: Refocusing on application demands", Proceedings of INFOCOM'10, International Conference on IEEE, San Diego, CA, USA, March.
- Li, S.L., Dong, J.L., Lu, W., Lim H., Xu, W.C. and Jin, Y. (2017a), "Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm", Smart Struct. Syst., Int. J., 20(6), 769-780. https://doi.org/10.12989/sss.2017.20.6.769
- Li, J., Hao, H. and Chen, Z. (2017b), "Damage identification and optimal sensor placement for structures under unknown traffic-induced vibrations", J. Aerosp. Eng., 30(2), B4015001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000550
- Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317, 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
- Liu, X., Cao, J., Lai, S., Yang, C., Wu, H. and Xu, Y. (2011), "Energy efficient clustering for WSN-based structural health monitoring", Proceedings of 30th IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, April.
- Liu, C., Fang, K. and Teng, J. (2015), "Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study", Smart. Mater. Struct., 24, 115034. https://doi.org/10.1088/0964-1726/24/11/115034
- Liu, C., Jiang, Z., Wang, F. and Chen, H. (2016), "Energy-efficient heterogeneous wireless sensor deployment with multiple objectives for structural health monitoring", Sensors, 16, 1865. https://doi.org/10.3390/s16111865
- Mak, N.H. and Seah, W.K.G. (2009), "How long is the lifetime of a wireless sensor network?", Proceedings of International Conference on Advanced Information Networking and Applications, Bradford, UK, May.
- Ni, Y., Wang, Y. and Xia, Y. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., Int. J., 15(2), 447-468. http://dx.doi.org/10.12989/sss.2015.15.2.447
- Noori, M., Cao, Y., Hou, Z.K. and Sharma, S. (2010), "Application of support vector machine for reliability assessment and structural health monitoring", Int. J. Eng. Under. Uncertain.: Hazard. Assess. Mitig., 2(3-4), 89-98.
- Onoufriou, T., Soman, R.N., Votsis, R., Chrysostomou, C. and Kyriakides, M. (2012), "Optimization of wireless sensor locations for SHM based on application demands and networking limitations", In: Management, Resilience and Sustainability: 6th International Conference on Bridge Maintenance, Safety and Management, Stresa, Lake Maggiore, Italy.
- Papadimitriou, C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound Vib., 278(4-5), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
- Papadimitriou, C., Beck, J.L. and Au, S.K. (2000), "Entropy-based optimal sensor location for structural model updating", J. Vib. Control, 6(5), 781-800. https://doi.org/10.1177/107754630000600508
- Papadopoulos, M. and Garcia, E. (1998), "Sensor placement methodologies for dynamic testing", AIAA J., 36(2), 256-263. https://doi.org/10.2514/2.7509
- Pei, X.Y., Yi, T.H. and Li, H.N. (2018), "A multitype sensor placement method for the modal estimation of structure", Smart Struct. Syst., Int. J., 21(4), 407-420. https://doi.org/10.12989/sss.2018.21.4.407
- Raich, A.M. and Liszkai, T.R. (2012), "Multi-objective optimization of sensor and excitation layouts for frequency response function-based structural damage identification", Comput. Aided. Civ. Inf. Eng., 27(2), 95-117. https://doi.org/10.1111/j.1467-8667.2011.00726.x
- Reynier, M. and Abou-Kandil, H. (1999), "Sensors location for updating problems", Mech. Syst. Signal. Process., 13(2), 297-314. https://doi.org/10.1006/mssp.1998.1213
- Sengupta, S., Das, S. and Nasir, M.D. (2013), "Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity", Eng. Appl. Artif. Intell., 26(1), 405-416. https://doi.org/10.1016/j.engappai.2012.05.018
- Shi, Q., Wang, X., Chen, W. and Hu, K. (2020), "Optimal sensor placement method considering the importance of structural performance degradation for the allowable loadings for damage identification", Appl. Math. Model., 86, 384-403. https://doi.org/10.1016/j.apm.2020.05.021
- Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Stephan, C. (2012), "Sensor placement for modal identification", Mech. Syst. Signal. Process., 27, 461-470. https://doi.org/10.1016/j.ymssp.2011.07.022
- Udwadia, F.E., (1994), "Methodology for optimal sensor locations for parameters identification in dynamic systems", J. Eng. Mech., 120(2), 368-390. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
- Wang, A., Heinzelman, W., Sinha, A. and Chandrakasan, A. (2001), "Energy-scalable protocols for battery-operated microsensor networks", VLSI. Signal. Process., 29, 223-237. https://doi.org/10.1109/SIPS.1999.822354
- Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Control. Health., 11(2), 91-124. https://doi.org/10.1002/stc.33
- Yao, L., Sethares, W.A. and Kammer, D.C. (1993), "Sensor placement for on-orbit modal identification via a genetic algorithm", AIAA J., 31(10), 1922-1928. https://doi.org/10.2514/3.11868
- Ye, S. and Ni, Y.Q. (2012), "Information entropy based algorithm of sensor placement optimization for structural damage detection", Smart Struct. Syst., Int. J., 10(4-5), 443-458. https://doi.org/10.12989/sss.2012.10.4_5.443
- Yi, T.H. and Li, H.N. (2012), "Methodology developments in sensor placement for health monitoring of civil infrastructures", Int. J. Distrib. Sens. Netw., 8(8), 612726. https://doi.org/10.1155/2012/612726
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control. Health. Monit., 20(5), 649-670. https://doi.org/10.1002/stc.1501
- Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart. Struct. Syst., Int. J., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
- Yi, T.H., Li, H.N. and Wang, C.W. (2016), "Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm", Struct. Control. Health. Monit., 23(4), 719-734. https://doi.org/10.1002/stc.1806
- Yi, T.H., Huang, H.B. and Li, H.N. (2017), "Development of sensor validation methodologies for structural health monitoring: A comprehensive review", Measurement, 109, 200-214. https://doi.org/10.1016/j.measurement.2017.05.064
- Yuen, K.V. and Katafygiotis, L.S. (2005), "An efficient simulation method for reliability analysis of linear dynamical systems using simple additive rules of probability", Probabilistic. Eng. Mech., 20(1), 109-114. https://doi.org/10.1016/j.probengmech.2004.07.003
- Yuen, K.V. and Kuok, S.C. (2015), "Efficient Bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems", Earthq. Eng. Struct. Dyn., 44(5), 757-774. https://doi.org/10.1002/eqe.2486
- Yuen, K.V., Shi, Y.-F., Beck, J.L. and Lam, H.F. (2007), "Structural Protection Using MR Dampers with Clipped Robust Reliability-based Control", Struct. Multidiscipl. Optimiz., 34(5), 431-443. https://doi.org/10.1007/s00158-007-0097-3
- Yuen, K.V., Hao, X.H. and Kuok, S.C. (2022), "Robust sensor placement for structural identification", Struct. Control. Health. Monit., 29(1), e2861. https://doi.org/10.1002/stc.2861
- Zhang, F.L., Ni, Y.Q., Ni, Y.C. and Wang, Y.W. (2016), "Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method", Smart Struct. Syst., Int. J., 17(2), 209-230. https://doi.org/10.12989/sss.2016.17.2.209
- Zhang, J., Maes, K., De Roeck, G., Reynders, E., Papadimitriou, C. and Lombaert, G. (2017), "Optimal sensor placement for multi-setup modal analysis of structures", J. Sound Vib., 401, 214-232. https://doi.org/10.1016/j.jsv.2017.04.041
- Zhao, Y., Noori, M., Altabey, W.A. and Beheshti-Aval, S.B. (2018), "Mode shape-based damage identification for a reinforced concrete beam using wavelet coefficient differences and multiresolution analysis", Struct. Control. Health. Monit., 25(1), e2041. https://doi.org/10.1002/stc.2041
- Zhou, G.D. and Yi, T.H. (2013), "Recent developments on wireless sensor networks technology for bridge health monitoring", Math. Probl. Eng., 3, 1-33. https://doi.org/10.1155/2013/947867
- Zhou, G.D., Yi, T.H. and Zhang, H. (2015), "Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control. Health. Monit., 22, 648-666. https://doi.org/10.1002/stc.1707