DOI QR코드

DOI QR Code

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao (State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau) ;
  • Sin-Chi, Kuok (State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau) ;
  • Ka-Veng, Yuen (State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau)
  • 투고 : 2022.03.31
  • 심사 : 2022.09.15
  • 발행 : 2022.12.25

초록

In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

키워드

과제정보

This work is funded by the Science and Technology Development Fund, Macau SAR under Research Grant SKL-IOTSC(UM)-2021-2023 and 0094/2021/A2, the Research Committee of University of Macau under Research Grant MYRG2018-00048-AAO and SRG2021-00006-FST, and the Guangdong-Hong Kong-Macau Joint Laboratory Program under Grant 2020B1212030009. These generous supports are gratefully acknowledged.

참고문헌

  1. Akkaya, K., Younis, M. and Youssef, W. (2007), "Positioning of base stations in wireless sensor networks", IEEE. Commun. Mag., 45(4), 96-102. https://doi.org/10.1109/MCOM.2007.343618
  2. Al-Turjman, F.M. (2018), "Optimized hexagon-based deployment for large-scale ubiquitous sensor networks", J. Netw. Syst. Manag., 26(2), 255-283. https://doi.org/10.1007/s10922-017-9415-2
  3. Al-Turjman, F.M., Hassanein, H.S. and Ibnkahla, M. (2015), "Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring", Ad. Hoc. Netw., 24, 172-185. https://doi.org/10.1016/j.adhoc.2014.08.017
  4. Argyris, C., Papadimitriou, C. and Panetsos, P. (2017), "Bayesian optimal sensor placement for modal identification of civil infrastructures", J. Smart Cities., 2(2), 69-86. http://dx.doi.org/10.26789/JSC.2016.02.001
  5. Argyris, C., Chowdhury, S., Zabel, V. and Papadimitriou, C. (2018), "Bayesian optimal sensor placement for crack identification in structures using strain measurements", Struct. Control. Health. Monit., 25(5), e2137. https://doi.org/10.1002/stc.2137
  6. Bhuiyan, M.Z.A. and Cao, J.N. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE Trans. Comput., 64, 382-395. https://doi.org/10.1109/TC.2013.195
  7. Casciati, F. and Fuggini, C. (2011), "Monitoring a steel building using GPS sensors", Smart Struct. Syst., Int. J., 7(5), 349-363. https://doi.org/10.12989/sss.2011.7.5.349
  8. Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer Jr, B.F. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", Steel Struct., 8, 267-275. www.ijoss.org
  9. El-Qawasma, F.A., Elfouly, T.M. and Ahmed, M.H. (2019), "Minimising number of sensors in wireless sensor networks for structure health monitoring systems", IET. Wireless. Sensor Syst., 9(2), 94-101. https://doi.org/10.1049/iet-wss.2018.5031
  10. Elsersy, M., Elfouly, T.M. and Ahmed, M.H. (2016), "Joint optimal placement, routing, and flow assignment in wireless sensor networks for structural health monitoring", IEEE Sensors. J., 16(12), 5095-5106. https://doi.org/10.1109/JSEN.2016.2554462
  11. Fang, K., Liu, C. and Teng, J. (2018), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health. Monit., 17(2), 266-278. https://doi.org/10.1177/1475921717689967
  12. Fu, T.S., Ghosh, A., Johnson, E.A. and Krishnamachari, B. (2013), "Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks", Struct. Control. Health. Monit., 20(6), 971-986. https://doi.org/10.1002/stc.1510
  13. Geoffrine, J.M.C. and Geetha, V. (2019), "Energy optimization with higher information quality for SHM application in wireless sensor networks", IEEE Sensors J., 19(9), 3513-3520. https://doi.org/10.1109/JSEN.2019.2892870
  14. Gul, M. and Catbas, F.N. (2011), "Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering", J. Sound Vib., 330(6), 1196-1210. https://doi.org/10.1016/j.jsv.2010.09.024
  15. Heinzelman, W.B., Chandrakasan, A.P. and Balakrishnan, H. (2002), "An application-specific protocol architecture for wireless microsensor networks", IEEE. Trans. Wirel. Commun., 1, 660-670. https://doi.org/10.1109/TWC.2002.804190
  16. Heredia-Zavoni, E. and Esteva, L. (1998), "Optimal instrumentation of uncertain structural systems subject to earthquake motions", Earthq. Eng. Struct. Dyn., 27(4), 343-362. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343:AID-EQE726>3.0.CO;2-F
  17. Jalsan, K.E., Rohan, N.S. and Flouri, K. (2014), "Layout optimization of wireless sensor networks for structural health monitoring", Smart Struct. Syst., Int. J., 14(1), 39-54. https://doi.org/10.12989/sss.2014.14.1.039
  18. Jung, H.J., Kim I.H. and Jang, S.J. (2011), "An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node", Smart. Mater. Struct., 20(7), 075001. http://dx.doi.org/10.1088/0964-1726/20/7/075001
  19. Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dyn., 14(2), 251-259. https://doi.org/10.2514/3.20635
  20. Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. Dyn., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53
  21. Kuok, S.C. and Yuen, K.V. (2016), "Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework", Smart Struct. Syst., Int. J., 17(3), 445-470. http://dx.doi.org/10.12989/sss.2016.17.3.445
  22. Kurata, N., Spencer Jr, B.F. and Ruiz-Sandoval, M. (2005), "Risk monitoring of buildings with wireless sensor networks", Struct. Control. Health. Monit., 12, 315-327. https://doi.org/10.1002/stc.73
  23. Lam, H.F. and Adeagbo, M.O. (2022), "An enhanced sequential sensor optimization scheme and its application in the system identification of a rail-sleeper-ballast system", Mech. Syst. Signal. Process., 163, 108188. https://doi.org/10.1016/j.ymssp.2021.108188
  24. Lam, H.F., Yuen, K.V. and Beck, J.L. (2006), "Structural health monitoring via measured Ritz vectors utilizing artificial neural networks", Comput. Aided. Civil Inf. Eng., 21(4), 232-241. https://doi.org/10.1111/j.1467-8667.2006.00431.x
  25. Lam, H.F., Wong, M.T. and Yang, Y.B. (2012), "A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper", Eng. Struct., 45, 284-298. https://doi.org/10.1016/j.engstruct.2012.06.022
  26. Lam, H.F., Alabi, S.A. and Yang, J.H. (2017), "Identification of rail-sleeper-ballast system through time-domain Markov chain Monte Carlo-based Bayesian approach", Eng. Struct., 140, 421-436. https://doi.org/10.1016/j.engstruct.2017.03.001
  27. Lam, H.F., Yang, J.H. and Au, S.K. (2018), "Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection", Struct. Control. Health. Monit., 25(4), e2140. https://doi.org/10.1002/stc.2140
  28. Lei, Y., Shen, W.A., Song, Y. and Wang, Y. (2010), "Intelligent wireless sensors with application to the identification of structural modal parameters and steel cable forces: from the lab to the field", Adv. Civil Eng., 2010, 1-9. https://doi.org/10.1155/2010/316023
  29. Lei, Y., Chen, F. and Zhou, H. (2015), "An algorithm based on two-step Kalman filter for intelligent structural damage detection", Struct. Control. Health. Monit., 22(4), 694-706. https://doi.org/10.1002/stc.1712
  30. Lei, Y., Yang, N. and Xia, D.D. (2017), "Probabilistic structural damage detection approaches based on structural dynamic response moments", Smart Struct. Syst., Int. J., 20(2), 207-217. https://doi.org/10.12989/sss.2017.20.2.207
  31. Lei, Y., Lu, J.B. and Huang, J.S. (2020), "Synthesize identification and control for smart structures with time-varying parameters under unknown earthquake excitation", Struct. Control. Health. Monit., 27(4), e2512. https://doi.org/10.1002/stc.2512
  32. Li, B., Wang, D., Wang, F. and Ni, Y.Q. (2010), "High quality sensor placement for SHM systems: Refocusing on application demands", Proceedings of INFOCOM'10, International Conference on IEEE, San Diego, CA, USA, March.
  33. Li, S.L., Dong, J.L., Lu, W., Lim H., Xu, W.C. and Jin, Y. (2017a), "Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm", Smart Struct. Syst., Int. J., 20(6), 769-780. https://doi.org/10.12989/sss.2017.20.6.769
  34. Li, J., Hao, H. and Chen, Z. (2017b), "Damage identification and optimal sensor placement for structures under unknown traffic-induced vibrations", J. Aerosp. Eng., 30(2), B4015001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000550
  35. Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317, 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
  36. Liu, X., Cao, J., Lai, S., Yang, C., Wu, H. and Xu, Y. (2011), "Energy efficient clustering for WSN-based structural health monitoring", Proceedings of 30th IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, April.
  37. Liu, C., Fang, K. and Teng, J. (2015), "Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study", Smart. Mater. Struct., 24, 115034. https://doi.org/10.1088/0964-1726/24/11/115034
  38. Liu, C., Jiang, Z., Wang, F. and Chen, H. (2016), "Energy-efficient heterogeneous wireless sensor deployment with multiple objectives for structural health monitoring", Sensors, 16, 1865. https://doi.org/10.3390/s16111865
  39. Mak, N.H. and Seah, W.K.G. (2009), "How long is the lifetime of a wireless sensor network?", Proceedings of International Conference on Advanced Information Networking and Applications, Bradford, UK, May.
  40. Ni, Y., Wang, Y. and Xia, Y. (2015), "Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses", Smart Struct. Syst., Int. J., 15(2), 447-468. http://dx.doi.org/10.12989/sss.2015.15.2.447
  41. Noori, M., Cao, Y., Hou, Z.K. and Sharma, S. (2010), "Application of support vector machine for reliability assessment and structural health monitoring", Int. J. Eng. Under. Uncertain.: Hazard. Assess. Mitig., 2(3-4), 89-98.
  42. Onoufriou, T., Soman, R.N., Votsis, R., Chrysostomou, C. and Kyriakides, M. (2012), "Optimization of wireless sensor locations for SHM based on application demands and networking limitations", In: Management, Resilience and Sustainability: 6th International Conference on Bridge Maintenance, Safety and Management, Stresa, Lake Maggiore, Italy.
  43. Papadimitriou, C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound Vib., 278(4-5), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
  44. Papadimitriou, C., Beck, J.L. and Au, S.K. (2000), "Entropy-based optimal sensor location for structural model updating", J. Vib. Control, 6(5), 781-800. https://doi.org/10.1177/107754630000600508
  45. Papadopoulos, M. and Garcia, E. (1998), "Sensor placement methodologies for dynamic testing", AIAA J., 36(2), 256-263. https://doi.org/10.2514/2.7509
  46. Pei, X.Y., Yi, T.H. and Li, H.N. (2018), "A multitype sensor placement method for the modal estimation of structure", Smart Struct. Syst., Int. J., 21(4), 407-420. https://doi.org/10.12989/sss.2018.21.4.407
  47. Raich, A.M. and Liszkai, T.R. (2012), "Multi-objective optimization of sensor and excitation layouts for frequency response function-based structural damage identification", Comput. Aided. Civ. Inf. Eng., 27(2), 95-117. https://doi.org/10.1111/j.1467-8667.2011.00726.x
  48. Reynier, M. and Abou-Kandil, H. (1999), "Sensors location for updating problems", Mech. Syst. Signal. Process., 13(2), 297-314. https://doi.org/10.1006/mssp.1998.1213
  49. Sengupta, S., Das, S. and Nasir, M.D. (2013), "Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity", Eng. Appl. Artif. Intell., 26(1), 405-416. https://doi.org/10.1016/j.engappai.2012.05.018
  50. Shi, Q., Wang, X., Chen, W. and Hu, K. (2020), "Optimal sensor placement method considering the importance of structural performance degradation for the allowable loadings for damage identification", Appl. Math. Model., 86, 384-403. https://doi.org/10.1016/j.apm.2020.05.021
  51. Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
  52. Stephan, C. (2012), "Sensor placement for modal identification", Mech. Syst. Signal. Process., 27, 461-470. https://doi.org/10.1016/j.ymssp.2011.07.022
  53. Udwadia, F.E., (1994), "Methodology for optimal sensor locations for parameters identification in dynamic systems", J. Eng. Mech., 120(2), 368-390. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
  54. Wang, A., Heinzelman, W., Sinha, A. and Chandrakasan, A. (2001), "Energy-scalable protocols for battery-operated microsensor networks", VLSI. Signal. Process., 29, 223-237. https://doi.org/10.1109/SIPS.1999.822354
  55. Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Control. Health., 11(2), 91-124. https://doi.org/10.1002/stc.33
  56. Yao, L., Sethares, W.A. and Kammer, D.C. (1993), "Sensor placement for on-orbit modal identification via a genetic algorithm", AIAA J., 31(10), 1922-1928. https://doi.org/10.2514/3.11868
  57. Ye, S. and Ni, Y.Q. (2012), "Information entropy based algorithm of sensor placement optimization for structural damage detection", Smart Struct. Syst., Int. J., 10(4-5), 443-458. https://doi.org/10.12989/sss.2012.10.4_5.443
  58. Yi, T.H. and Li, H.N. (2012), "Methodology developments in sensor placement for health monitoring of civil infrastructures", Int. J. Distrib. Sens. Netw., 8(8), 612726. https://doi.org/10.1155/2012/612726
  59. Yi, T.H., Li, H.N. and Gu, M. (2013), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control. Health. Monit., 20(5), 649-670. https://doi.org/10.1002/stc.1501
  60. Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart. Struct. Syst., Int. J., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
  61. Yi, T.H., Li, H.N. and Wang, C.W. (2016), "Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm", Struct. Control. Health. Monit., 23(4), 719-734. https://doi.org/10.1002/stc.1806
  62. Yi, T.H., Huang, H.B. and Li, H.N. (2017), "Development of sensor validation methodologies for structural health monitoring: A comprehensive review", Measurement, 109, 200-214. https://doi.org/10.1016/j.measurement.2017.05.064
  63. Yuen, K.V. and Katafygiotis, L.S. (2005), "An efficient simulation method for reliability analysis of linear dynamical systems using simple additive rules of probability", Probabilistic. Eng. Mech., 20(1), 109-114. https://doi.org/10.1016/j.probengmech.2004.07.003
  64. Yuen, K.V. and Kuok, S.C. (2015), "Efficient Bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems", Earthq. Eng. Struct. Dyn., 44(5), 757-774. https://doi.org/10.1002/eqe.2486
  65. Yuen, K.V., Shi, Y.-F., Beck, J.L. and Lam, H.F. (2007), "Structural Protection Using MR Dampers with Clipped Robust Reliability-based Control", Struct. Multidiscipl. Optimiz., 34(5), 431-443. https://doi.org/10.1007/s00158-007-0097-3
  66. Yuen, K.V., Hao, X.H. and Kuok, S.C. (2022), "Robust sensor placement for structural identification", Struct. Control. Health. Monit., 29(1), e2861. https://doi.org/10.1002/stc.2861
  67. Zhang, F.L., Ni, Y.Q., Ni, Y.C. and Wang, Y.W. (2016), "Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method", Smart Struct. Syst., Int. J., 17(2), 209-230. https://doi.org/10.12989/sss.2016.17.2.209
  68. Zhang, J., Maes, K., De Roeck, G., Reynders, E., Papadimitriou, C. and Lombaert, G. (2017), "Optimal sensor placement for multi-setup modal analysis of structures", J. Sound Vib., 401, 214-232. https://doi.org/10.1016/j.jsv.2017.04.041
  69. Zhao, Y., Noori, M., Altabey, W.A. and Beheshti-Aval, S.B. (2018), "Mode shape-based damage identification for a reinforced concrete beam using wavelet coefficient differences and multiresolution analysis", Struct. Control. Health. Monit., 25(1), e2041. https://doi.org/10.1002/stc.2041
  70. Zhou, G.D. and Yi, T.H. (2013), "Recent developments on wireless sensor networks technology for bridge health monitoring", Math. Probl. Eng., 3, 1-33. https://doi.org/10.1155/2013/947867
  71. Zhou, G.D., Yi, T.H. and Zhang, H. (2015), "Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Control. Health. Monit., 22, 648-666. https://doi.org/10.1002/stc.1707