Acknowledgement
The study has been supported by the Research Grant Council of Hong Kong (project no. PolyU 15219819 and 15221521). The support is gratefully acknowledged. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.
References
- Andriotis, C.P. and Papakonstantinou, K.G. (2021), "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints", Reliabil. Eng. Syst. Safety, 212, P. 107551. https://doi.org/10.1016/j.ress.2021.107551
- Arulkumaran, K., Deisenroth, M.P., Brundage, M. and Bharath, A.A. (2017), "Deep reinforcement learning: A brief survey", IEEE Signal Process. Magaz., 34(6), 26-38. https://doi.org/10.1109/msp.2017.2743240
- Bocchini, P. and Frangopol, D.M. (2011), "Probabilistic bridge network life-cycle connectivity assessment and optimization", In: Applications of Statistics and Probability in Civil Engineering, pp. 160-161.
- Bocchini, P., Saydam, D. and Frangopol, D.M. (2013), "Efficient, accurate, and simple Markov chain model for the life-cycle analysis of bridge groups", Struct. Safety, 40, 51-64. https://doi.org/10.1016/j.strusafe.2012.09.004
- Chalabi, Z. and Lorenc, T. (2013), "Using agent-based models to inform evaluation of complex interventions: Examples from the built environment", Prevent. Medic., 57(5), 434-435. https://doi.org/10.1016/j.ypmed.2013.07.013
- Chen, S.R., Cai, C.S. and Levitan, M. (2007), "Understand and improve dynamic performance of transportation system - a case study of Luling Bridge", Eng. Struct., 29(6), 1043-1051. https://doi.org/10.1016/j.engstruct.2006.07.019
- Cheng, M. and Frangopol, D.M. (2021a), "A decision-making framework for load rating planning of aging bridges using deep reinforcement learning", J. Comput. Civil Eng., 35(6), p. 04021024. https://doi.org/10.1061/(asce)cp.1943-5487.0000991
- Cheng, M. and Frangopol, D.M. (2021b), "Optimal load rating-based inspection planning of corroded steel girders using Markov decision process", Probabil. Eng. Mech., 66, p. 103160. https://doi.org/10.1016/j.probengmech.2021.103160
- Cheng, M.Y., Chiu, Y.F., Chiu, C.K., Prayogo, D., Wu, Y.W., Hsu, Z.L. and Lin, C.H. (2019), "Risk-based maintenance strategy for deteriorating bridges using a hybrid computational intelligence technique: a case study", Struct. Infrastr. Eng., 15(3), 334-350. https://doi.org/10.1080/15732479.2018.1547767
- Dong, Y., Frangopol, D.M. and Saydam, D. (2014), "Sustainability of highway bridge networks under seismic hazard", J. Earthq. Eng., 18(1), 41-66. https://doi.org/10.1080/13632469.2013.841600
- Fan, W., Chen, Y., Li, J., Sun, Y., Feng, J., Hassanin, H. and Sareh, P. (2021), "Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications", Structures, 33, 3954-3963. https://doi.org/10.1016/j.istruc.2021.06.110
- Fiorillo, G. and Nassif, H. (2020), "Improving the conversion accuracy between bridge element conditions and NBI ratings using deep convolutional neural networks", Struct. Infrastr. Eng., 16(12), 1669-1682. https://doi.org/10.1080/15732479.2020.1725065
- Frangopol, D.M. and Bocchini, P. (2012), "Bridge network performance, maintenance and optimisation under uncertainty: accomplishments and challenges", Struct. Infrastr. Eng., 8(4), 341-356. https://doi.org/10.1080/15732479.2011.563089
- Frangopol, D.M., Dong, Y. and Sabatino, S. (2017), "Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making", Struct. Infrastr. Eng., 13(10), 1239-1257. https://doi.org/10.1080/15732479.2016.1267772
- Ge, B. and Kim, S. (2021a), "Determination of appropriate updating parameters for effective life-cycle management of deteriorating structures under uncertainty", Struct. Infrastr. Eng., 17(9), 1284-1298. https://doi.org/10.1080/15732479.2020.1809466
- Ge, B. and Kim, S. (2021b), "Probabilistic service life prediction updating with inspection information for RC structures subjected to coupled corrosion and fatigue", Eng. Struct., 238, p. 112260. https://doi.org/10.1016/j.engstruct.2021.112260
- Guan, X., Xiang, Z., Bao, Y. and Li, H. (2022), "Structural dominant failure modes searching method based on deep reinforcement learning", Reliabil. Eng. Syst. Safety, 219, p. 108258. https://doi.org/10.1016/j.ress.2021.108258
- Hadjidemetriou, G.M., Herrera, M. and Parlikad, A.K. (2022), "Condition and criticality-based predictive maintenance prioritisation for networks of bridges", Struct. Infrastr. Eng., 18(8), 1207-1221. https://doi.org/10.1080/15732479.2021.1897146
- Huynh, T.C., Nguyen, T.T., Kim, J.T., Ta, Q.B., Ho, D.D. and Phan, T.T.V. (2021), "Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations", Smart Struct. Syst., Int. J., 28(1), 69-87. https://doi.org/10.12989/sss.2021.28.1.069
- Jung, H.J., Lee, J.H., Yoon, S.S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Kabir, G., Sadiq, R. and Tesfamariam, S. (2014), "A review of multi-criteria decision-making methods for infrastructure management", Struct. Infrastr. Eng., 10(9), 1176-1210. https://doi.org/10.1080/15732479.2013.795978
- Law, S.S. and Li, J. (2010), "Updating the reliability of a concrete bridge structure based on condition assessment with uncertainties", Eng. Struct., 32(1), 286-296. https://doi.org/10.1016/j.engstruct.2009.09.015
- Lee, D.H. and Koh, B.H. (2021), "An image-based deep learning network technique for structural health monitoring", Smart Struct. Syst., Int. J., 28(6), 799-810. https://doi.org/10.12989/sss.2021.28.6.799
- Lee, J.H., Yoon, S., Kim, B., Gwon, G.H., Kim, I.H. and Jung, H.J. (2021), "A new image-quality evaluating and enhancing methodology for bridge inspection using an unmanned aerial vehicle", Smart Struct. Syst., Int. J., 27(2), 209-226. https://doi.org/10.12989/sss.2021.27.2.209
- Lei, X., Sun, L. and Xia, Y. (2020), "Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks", Struct. Health Monitor., 20(4), 2069-2087. https://doi.org/10.1177/1475921720959226
- Lei, X., Sun, L. and Xia, Y. (2021a), "Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks", Struct. Health Monitor. - Int. J., 20(4), 2069-2087. https://doi.org/10.1177/1475921720959226
- Lei, X., Sun, L. and Xia, Y. (2021b), "Seismic fragility assessment and maintenance management on regional bridges using bayesian multi-parameter estimation", Bull. Earthq. Eng., 19(15), 6693-6717. https://doi.org/10.1007/s10518-021-01072-6
- Lei, X., Xia, Y., Dong, Y. and Sun, L. (2022a), "Multi-level timevariant vulnerability assessment of deteriorating bridge networks with structural condition records", Eng. Struct., 266, p. 114581. https://doi.org/10.1016/j.engstruct.2022.114581
- Lei, X., Xia, Y., Komarizadehasl, S. and Sun, L. (2022b), "Condition level deteriorations modeling of RC beam bridges with U-Net convolutional neural networks", Structures, 42, 333-342. http://https://doi.org/10.1016/j.istruc.2022.06.013
- Li, S., Ou, J., Wang, J., Gao, X. and Yang, C. (2019), "Level 2 safety evaluation of concrete-filled steel tubular arch bridges incorporating structural health monitoring and inspection information based on China bridge standards", Struct. Control Health Monitor., 26(3), p. e2303. https://doi.org/10.1002/stc.2303
- Liu, H. and Zhang, Y. (2020), "Bridge condition rating data modeling using deep learning algorithm", Struct. Infrastr. Eng., 16(10), 1447-1460. https://doi.org/10.1080/15732479.2020.1712610
- Liu, K., Zhai, C. and Dong, Y. (2021), "Optimal restoration schedules of transportation network considering resilience", Struct. Infrastr. Eng., 17(8), 1141-1154. https://doi.org/10.1080/15732479.2020.1801764
- Lydon, D., Taylor, S.E., Lydon, M., del Rincon, J.M. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
- Memarzadeh, M. and Pozzi, M. (2019), "Model-free reinforcement learning with model-based safe exploration: Optimizing adaptive recovery process of infrastructure systems", Struct. Safety, 80, 46-55. https://doi.org/10.1016/j.strusafe.2019.04.003
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S. (2015), "Human-level control through deep reinforcement learning", Nature, 518(7540), 529-533. https://doi.org/10.1038/nature14236
- Mondal, T.G. and Jahanshahi, M.R. (2020), "Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle", Smart Struct. Syst., Int. J., 25(6), 733-749. https://doi.org/10.12989/sss.2020.25.6.733
- Oh, B.K., Glisic, B. and Park, H.S. (2021), "Convolutional neural network-based damage detection method for building structures", Smart Struct. Syst., Int. J., 27(6), 903-916. https://doi.org/10.12989/sss.2021.27.6.903
- Ti, Z., Deng, X.W. and Yang, H. (2020), "Wake modeling of wind turbines using machine learning", Appl. Energy, 257, p. 114025. https://doi.org/10.1016/j.apenergy.2019.114025
- Ti, Z., Deng, X.W. and Zhang, M. (2021), "Artificial Neural Networks based wake model for power prediction of wind farm", Renewable Energy, 172, 618-631. https://doi.org/10.1016/j.renene.2021.03.030
- Van Hasselt, H., Guez, A. and Silver, D. (2016), "Deep reinforcement learning with double q-learning", Proceedings of the 13th AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, pp. 2094-2100, Phoenix. AZ, USA, February. https://doi.org/10.1609/aaai.v30i1.10295
- Wang, Z., Dong, Y. and Jin, W. (2021), "Life-cycle cost analysis of deteriorating civil infrastructures incorporating social sustainability", J. Infrastr. Syst., 27(3), p. 04021013. https://doi.org/10.1061/(asce)is.1943-555x.0000607
- Wei, S., Bao, Y. and Li, H. (2020), "Optimal policy for structure maintenance: A deep reinforcement learning framework", Struct. Safety, 83, p. 101906. https://doi.org/10.1016/j.strusafe.2019.101906
- Xia, H.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Reliability-based condition assessment of in-service bridges using mixture distribution models", Comput. Struct., 106, 204-213. https://doi.org/10.1016/j.compstruc.2012.05.003
- Xia, Y., Lei, X., Wang, P., Liu, G. and Sun, L. (2020), "Long-term performance monitoring and assessment of concrete beam bridges using neutral axis indicator", Struct. Control Health Monitor., 27(12), p. e2637. https://doi.org/10.1002/stc.2637
- Xia, Y., Lei, X., Wang, P. and Sun, L. (2021), "Artificial intelligence based structural assessment for regional short-and medium-span concrete beam bridges with inspection information", Remote Sens., 13(18), p. 3687. https://doi.org/10.3390/rs13183687
- Xia, Y., Lei, X., Wang, P. and Sun, L. (2022), "A data-driven approach for regional bridge condition assessment using inspection reports", Struct. Control Health Monitor., 29(4), p. e2915. https://doi.org/10.1002/stc.2915
- Yang, D.Y. (2022), "Adaptive Risk-Based Life-Cycle Management for Large-Scale Structures Using Deep Reinforcement Learning and Surrogate Modeling", J. Eng. Mech., 148(1), p. 04021126. https://doi.org/10.1061/(asce)em.1943-7889.0002028
- Yang, X.M., Yi, T.H., Qu, C.X., Li, H.N. and Liu, H. (2020), "Continuous tracking of bridge modal parameters based on subspace correlations", Struct. Control Health Monitor., 27(10), p. e2615. https://doi.org/10.1002/stc.2615
- Yang, S., Deng, X., Ti, Z., Yan, B. and Yang, Q. (2022), "Cooperative yaw control of wind farm using a double-layer machine learning framework", Renew. Energy, 193, 519-537. https://doi.org/10.1016/j.renene.2022.04.104
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Yi, T.H., Zhang, J., Qu, C.X. and Li, H.N. (2021), "Damage detection for decks of concrete girder bridges using the frequency obtained from an actively excited vehicle", Smart Struct. Syst., Int. J., 27(1), 101-114. https://doi.org/10.12989/sss.2021.27.1.101
- Zhang, N. and Si, W. (2020), "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks", Reliabil. Eng. Syst. Safety, 203, p. 107094. https://doi.org/10.1016/j.ress.2020.107094
- Zhang, Y., Kim, C.W., Zhang, L., Bai, Y., Yang, H., Xu, X. and Zhang, Z. (2020), "Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach", Smart Struct. Syst., Int. J., 25(3), 285-299. https://doi.org/10.12989/sss.2020.25.3.285
- Zheng, X., Yang, D.H., Yi, T.H. and Li, H.N. (2021), "Bridge influence surface identification method considering the spatial effect of vehicle load", Struct. Control Health Monitor., 28(8), p. e2769. https://doi.org/10.1002/stc.2769
- Zhu, J. and Wang, Y. (2021), "Feature Selection and Deep Learning for Deterioration Prediction of the Bridges", J. Perform. Constr. Facil., 35(6), p. 04021078. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001653