DOI QR코드

DOI QR Code

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang (School of Civil Engineering, Southeast University) ;
  • Tong, Guo (School of Civil Engineering, Southeast University) ;
  • Ruizhao, Zhu (School of Civil Engineering, Southeast University) ;
  • Yueran, Zong (School of Civil Engineering, Southeast University) ;
  • Zhihong, Pan (School of Architecture and Civil Engineering, Jiangsu University of Science and Technology)
  • Received : 2022.04.10
  • Accepted : 2022.09.08
  • Published : 2022.12.25

Abstract

Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Keywords

Acknowledgement

The authors gratefully acknowledge the Ministry of Science and Technology of the People's Republic of China (No.2018YFE0206100). The research was financially supported by the Jiangsu Provincial Department of Science and Technology under (No.BE2019107).

References

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
  2. Bayissa, W.L. and Haritos, N. (2007), "Structural damage identification in plates using spectral strain energy analysis", J. Sound Vib., 307(1-2), 226-249. https://doi.org/10.1016/j.jsv.2007.06.062
  3. Cha, Y.J. and Choi, W. (2017), "Vision-based concrete crack detection using a convolutional neural network", In: Dynamics of Civil Structures, Springer, Volume 2, Cham, pp. 71-73.
  4. Cheng-Zhong, Q. and Xu-Wei, L. (2012), "Damage identification for transmission towers based on HHT", Energy Procedia, 17, 1390-1394. https://doi.org/10.1016/j.egypro.2012.02.257
  5. Cui, M., Wu, G., Chen, Z., Dang, J., Zhou, M. and Feng, D. (2021), "Geometric attention regularization enhancing convolutional neural networks for bridge rubber bearing damage assessment", J. Perform. Constr. Facil., 35(5), 04021061. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001634
  6. Das, S. and Saha, P. (2018), "Structural health monitoring techniques implemented on IASC-ASCE benchmark problem: a review", J. Civil Struct. Health Monitor., 8(4), 689-718. https://doi.org/10.1007/s13349-018-0292-5
  7. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  8. Erdogan, Y.S., Gul, M., Catbas, F.N. and Bakir, P.G. (2014), "Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data", J. Struct. Eng., 140(11), 04014078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001002
  9. Flah, M., Nunez, I., Ben Chaabene, W. and Nehdi, M.L. (2021), "Machine learning algorithms in civil structural health monitoring: a systematic review", Arch. Computat. Methods Eng., 28(4), 2621-2643. https://doi.org/10.1007/s11831-020-09471-9
  10. Gentile, C., Ruccolo, A. and Canali, F. (2019), "Continuous monitoring of the Milan Cathedral: dynamic characteristics and vibration-based SHM", J. Civil Struct. Health Monitor., 9(5), 671-688. https://doi.org/10.1007/s13349-019-00361-8
  11. Goyal, D. and Pabla, B.S. (2016), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Arch. Computat. Methods Eng., 23(4), 585-594. https://doi.org/10.1007/s11831-015-9145-0
  12. He, W.Y., Zhu, S. and Ren, W.X. (2018), "Progressive damage detection of thin plate structures using wavelet finite element model updating", Smart Struct. Syst., Int. J., 22(3), 277-290. https://doi.org/10.12989/sss.2018.22.3.277
  13. Hera, A. and Hou, Z. (2004), "Application of wavelet approach for ASCE structural health monitoring benchmark studies", J. Eng. Mech., 130(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(96)
  14. Hsu, T.Y., Liu, C.Y., Hsieh, Y.M. and Weng, C.T. (2021), "Post-earthquake fast building safety assessment using smartphone-based interstory drifts measurement", Smart Struct. Syst., Int. J., 29(2), 287-299. https://doi.org/10.12989/sss.2022.29.2.287
  15. Jalali, M.H. and Rideout, D.G. (2022), "Substructural damage detection using frequency response function based inverse dynamic substructuring", Mech. Syst. Signal Process., 163, 108166. https://doi.org/10.1016/j.ymssp.2021.108166
  16. Jiang, K., Han, Q., Du, X. and Ni, P. (2021), "A decentralized unsupervised structural condition diagnosis approach using deep auto-encoders", Comput.-Aided Civil Infrastr. Eng., 36(6), 711-732. https://doi.org/10.1111/mice.12641
  17. Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
  18. Khayatazad, M., Honhon, M. and De Waele, W. (2022), "Detection of corrosion on steel structures using an artificial neural network", Struct. Infrastr. Eng., 1-12. https://doi.org/10.1080/15732479.2022.2069272
  19. LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  20. Leon-Medina, J.X., Anaya, M., Pozo, F. and Tibaduiza, D. (2020), "Nonlinear feature extraction through manifold learning in an electronic tongue classification task", Sensors, 20(17), 4834. https://doi.org/10.3390/s20174834
  21. MHURD-PRC (2010), Code for Seismic Design of Buildings, China Architecture & Building Press.
  22. Na, S., Heo, S., Han, S., Shin, Y. and Roh, Y. (2022), "Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology-Organisation-Environment (TOE) Framework", Buildings, 12(2), 90. https://doi.org/10.3390/buildings12020090
  23. Pan, H., Azimi, M., Yan, F. and Lin, Z. (2018), "Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges", J. Bridge Eng., 23(6), 04018033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199
  24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "Pytorch: An imperative style, high-performance deep learning library", Adv. Neural Inform. Process. Syst., 32. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
  25. Qu, C.Z. and Lian, X.W. (2012), "Damage identification for transmission towers based on HHT", Energy Procedia, 17, 1390-1394. https://doi.org/10.1016/j.egypro.2012.02.257
  26. Reynolds, P. and Pavic, A. (2003), "Effects of false floors on vibration serviceability of building floors. I: Modal properties", J. Perform. Constr. Facil., 17(2), 75-86. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:2(75)
  27. Smarra, F., Girolamo, G.D.D., Gattulli, V., Graziosi, F. and D'Innocenzo, A. (2020), "Learning models for seismic-induced vibrations optimal control in structures via random forests", J. Optimiz. Theory Applicat., 187(3), 855-874. https://doi.org/10.1007/s10957-020-01698-7
  28. Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
  29. Tibaduiza Burgos, D.A., Gomez Vargas, R.C., Pedraza, C., Agis, D. and Pozo, F. (2020), "Damage identification in structural health monitoring: A brief review from its implementation to the use of data-driven applications", Sensors, 20(3), 733. https://doi.org/10.3390/s20030733
  30. Wang, N., Zhao, Q., Li, S., Zhao, X. and Zhao, P. (2018a), "Damage classification for masonry historic structures using convolutional neural networks based on still images", Comput.- Aided Civil Infrastr. Eng., 33(12), 1073-1089. https://doi.org/10.1111/mice.12411
  31. Wang, Y., Thambiratnam, D.P., Chan, T.H.T. and Nguyen, A. (2018b), "Damage detection in asymmetric buildings using vibration-based techniques", Struct. Control Health Monitor., 25(5), e2148. https://doi.org/10.1002/stc.2148
  32. Wang, Z.C., Ren, W.X. and Chen, G. (2018c), "Time-frequency analysis and applications in time-varying/nonlinear structural systems: a state-of-the-art review", Adv. Struct. Eng., 21(10), 1562-1584. https://doi.org/10.1177/1369433217751969
  33. Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-part II: local PCA for non-linear cases", Mech. Syst. Signal Process., 19(4), 865-880. https://doi.org/10.1016/j.ymssp.2004.12.003
  34. Yang, X.M., Yi, T.H., Qu, C.X., Li, H.N. and Liu, H. (2020), "Modal identification of high-speed railway bridges through free-vibration detection", J. Eng. Mech., 146(9), 04020107. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001847
  35. Yi, T.H., Yao, X.J., Qu, C.X. and Li, H.N. (2019), "Clustering number determination for sparse component analysis during output-only modal identification", J. Eng. Mech.-ASCE, 145(1), 04018122. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001557