Acknowledgement
The authors gratefully acknowledge the Ministry of Science and Technology of the People's Republic of China (No.2018YFE0206100). The research was financially supported by the Jiangsu Provincial Department of Science and Technology under (No.BE2019107).
References
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
- Bayissa, W.L. and Haritos, N. (2007), "Structural damage identification in plates using spectral strain energy analysis", J. Sound Vib., 307(1-2), 226-249. https://doi.org/10.1016/j.jsv.2007.06.062
- Cha, Y.J. and Choi, W. (2017), "Vision-based concrete crack detection using a convolutional neural network", In: Dynamics of Civil Structures, Springer, Volume 2, Cham, pp. 71-73.
- Cheng-Zhong, Q. and Xu-Wei, L. (2012), "Damage identification for transmission towers based on HHT", Energy Procedia, 17, 1390-1394. https://doi.org/10.1016/j.egypro.2012.02.257
- Cui, M., Wu, G., Chen, Z., Dang, J., Zhou, M. and Feng, D. (2021), "Geometric attention regularization enhancing convolutional neural networks for bridge rubber bearing damage assessment", J. Perform. Constr. Facil., 35(5), 04021061. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001634
- Das, S. and Saha, P. (2018), "Structural health monitoring techniques implemented on IASC-ASCE benchmark problem: a review", J. Civil Struct. Health Monitor., 8(4), 689-718. https://doi.org/10.1007/s13349-018-0292-5
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Erdogan, Y.S., Gul, M., Catbas, F.N. and Bakir, P.G. (2014), "Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data", J. Struct. Eng., 140(11), 04014078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001002
- Flah, M., Nunez, I., Ben Chaabene, W. and Nehdi, M.L. (2021), "Machine learning algorithms in civil structural health monitoring: a systematic review", Arch. Computat. Methods Eng., 28(4), 2621-2643. https://doi.org/10.1007/s11831-020-09471-9
- Gentile, C., Ruccolo, A. and Canali, F. (2019), "Continuous monitoring of the Milan Cathedral: dynamic characteristics and vibration-based SHM", J. Civil Struct. Health Monitor., 9(5), 671-688. https://doi.org/10.1007/s13349-019-00361-8
- Goyal, D. and Pabla, B.S. (2016), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Arch. Computat. Methods Eng., 23(4), 585-594. https://doi.org/10.1007/s11831-015-9145-0
- He, W.Y., Zhu, S. and Ren, W.X. (2018), "Progressive damage detection of thin plate structures using wavelet finite element model updating", Smart Struct. Syst., Int. J., 22(3), 277-290. https://doi.org/10.12989/sss.2018.22.3.277
- Hera, A. and Hou, Z. (2004), "Application of wavelet approach for ASCE structural health monitoring benchmark studies", J. Eng. Mech., 130(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(96)
- Hsu, T.Y., Liu, C.Y., Hsieh, Y.M. and Weng, C.T. (2021), "Post-earthquake fast building safety assessment using smartphone-based interstory drifts measurement", Smart Struct. Syst., Int. J., 29(2), 287-299. https://doi.org/10.12989/sss.2022.29.2.287
- Jalali, M.H. and Rideout, D.G. (2022), "Substructural damage detection using frequency response function based inverse dynamic substructuring", Mech. Syst. Signal Process., 163, 108166. https://doi.org/10.1016/j.ymssp.2021.108166
- Jiang, K., Han, Q., Du, X. and Ni, P. (2021), "A decentralized unsupervised structural condition diagnosis approach using deep auto-encoders", Comput.-Aided Civil Infrastr. Eng., 36(6), 711-732. https://doi.org/10.1111/mice.12641
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
- Khayatazad, M., Honhon, M. and De Waele, W. (2022), "Detection of corrosion on steel structures using an artificial neural network", Struct. Infrastr. Eng., 1-12. https://doi.org/10.1080/15732479.2022.2069272
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Leon-Medina, J.X., Anaya, M., Pozo, F. and Tibaduiza, D. (2020), "Nonlinear feature extraction through manifold learning in an electronic tongue classification task", Sensors, 20(17), 4834. https://doi.org/10.3390/s20174834
- MHURD-PRC (2010), Code for Seismic Design of Buildings, China Architecture & Building Press.
- Na, S., Heo, S., Han, S., Shin, Y. and Roh, Y. (2022), "Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology-Organisation-Environment (TOE) Framework", Buildings, 12(2), 90. https://doi.org/10.3390/buildings12020090
- Pan, H., Azimi, M., Yan, F. and Lin, Z. (2018), "Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges", J. Bridge Eng., 23(6), 04018033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "Pytorch: An imperative style, high-performance deep learning library", Adv. Neural Inform. Process. Syst., 32. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
- Qu, C.Z. and Lian, X.W. (2012), "Damage identification for transmission towers based on HHT", Energy Procedia, 17, 1390-1394. https://doi.org/10.1016/j.egypro.2012.02.257
- Reynolds, P. and Pavic, A. (2003), "Effects of false floors on vibration serviceability of building floors. I: Modal properties", J. Perform. Constr. Facil., 17(2), 75-86. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:2(75)
- Smarra, F., Girolamo, G.D.D., Gattulli, V., Graziosi, F. and D'Innocenzo, A. (2020), "Learning models for seismic-induced vibrations optimal control in structures via random forests", J. Optimiz. Theory Applicat., 187(3), 855-874. https://doi.org/10.1007/s10957-020-01698-7
- Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
- Tibaduiza Burgos, D.A., Gomez Vargas, R.C., Pedraza, C., Agis, D. and Pozo, F. (2020), "Damage identification in structural health monitoring: A brief review from its implementation to the use of data-driven applications", Sensors, 20(3), 733. https://doi.org/10.3390/s20030733
- Wang, N., Zhao, Q., Li, S., Zhao, X. and Zhao, P. (2018a), "Damage classification for masonry historic structures using convolutional neural networks based on still images", Comput.- Aided Civil Infrastr. Eng., 33(12), 1073-1089. https://doi.org/10.1111/mice.12411
- Wang, Y., Thambiratnam, D.P., Chan, T.H.T. and Nguyen, A. (2018b), "Damage detection in asymmetric buildings using vibration-based techniques", Struct. Control Health Monitor., 25(5), e2148. https://doi.org/10.1002/stc.2148
- Wang, Z.C., Ren, W.X. and Chen, G. (2018c), "Time-frequency analysis and applications in time-varying/nonlinear structural systems: a state-of-the-art review", Adv. Struct. Eng., 21(10), 1562-1584. https://doi.org/10.1177/1369433217751969
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-part II: local PCA for non-linear cases", Mech. Syst. Signal Process., 19(4), 865-880. https://doi.org/10.1016/j.ymssp.2004.12.003
- Yang, X.M., Yi, T.H., Qu, C.X., Li, H.N. and Liu, H. (2020), "Modal identification of high-speed railway bridges through free-vibration detection", J. Eng. Mech., 146(9), 04020107. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001847
- Yi, T.H., Yao, X.J., Qu, C.X. and Li, H.N. (2019), "Clustering number determination for sparse component analysis during output-only modal identification", J. Eng. Mech.-ASCE, 145(1), 04018122. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001557