DOI QR코드

DOI QR Code

CONVERGENCE THEOREMS FOR A HYBRID PAIR OF SINGLE-VALUED AND MULTI-VALUED NONEXPANSIVE MAPPING IN CAT(0) SPACES

  • Naknimit, Akkasriworn (Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University) ;
  • Anantachai, Padcharoen (Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University) ;
  • Ho Geun, Hyun (Department of Mathematics Education, Kyungnam University)
  • Received : 2021.09.23
  • Accepted : 2022.04.10
  • Published : 2022.12.06

Abstract

In this paper, we present a new mixed type iterative process for approximating the common fixed points of single-valued nonexpansive mapping and multi-valued nonexpansive mapping in a CAT(0) space. We demonstrate strong and weak convergence theorems for the new iterative process in CAT(0) spaces, as well as numerical results to support our theorem.

Keywords

Acknowledgement

The first and second authors were supported by he Research and Development Institute, Rambhai Barni Rajabhat University.

References

  1. N. Akkasriworn and K. Sokhuma, Convergence theorems for a pair of asymptotically and multivalued nonexpansive mapping in CAT(0) spaces, Commu. Kor. Math. Soc., 30(3) (2015), 177-189. https://doi.org/10.4134/CKMS.2015.30.3.177
  2. M. Asadi, Sh. Ghasemzadehdibagi, S. Haghayeghi and N. Ahmad, Fixed point theorems for (α, p)-nonexpansive mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 26(5) (2021), 1045-1057. https://doi.org/10.22771/NFAA.2021.26.05.14
  3. M. Bridson and A. Haeiger, Metric Spaces of Non-Positive Curvature. Springer, Berlin, 1999.
  4. F. Bruhat and J. Tits, Groupes reductifs sur un corps local, Inst. Hautes Etudes Sci. Publ. Math., 41 (1972), 5-251. https://doi.org/10.1007/BF02715544
  5. S. Dhompongsa, W.A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35-45.
  6. S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762-772. https://doi.org/10.1016/j.na.2005.09.044
  7. S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
  8. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95. https://doi.org/10.22771/NFAA.2018.23.01.07
  9. K.S. Kim, Existence theorem of a fixed point for asymptotically nonexpansive nonself mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 355-362. https://doi.org/10.22771/NFAA.2020.25.02.11
  10. W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.
  11. W. Kumam, D. Kitkuan, A. Padcharoen and P. Kumam, Proximal point algorithm for nonlinear multivalued type mappings in Hadamard spaces, Math. Methods Appl. Sci., 42(17) (2019), 5758-5768. https://doi.org/10.1002/mma.5552
  12. T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182. https://doi.org/10.1090/S0002-9939-1976-0423139-X
  13. G.A. Okeke, M. Abbas and M. de la Sen, Fixed point theorems for convex minimization problems in complex valued CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(4) (2020), 671-696. https://doi.org/10.22771/NFAA.2020.25.04.04
  14. J. Puiwong and S. Saejung, On convergence theorems for single-valued and multi-valued mappings in p-uniformly convex metric spaces, Carpathian J. Math., 37(3) (2021), 513-527. https://doi.org/10.37193/CJM.2021.03.13
  15. K. Sokhuma and K. Sokhuma, Convergence theorems for two nonlinear mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 27(3) (2022), 499-512.
  16. S. Suantai and W. Phuengrattana, Proximal point algorithms for a hybrid pair of non-expansive single-valued and multi-valued mappings in geodesic metric spaces, Mediterr. J. Math., 2017 (2017), 17 pages.
  17. B. Thakur, D. Thakur and M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30(10) (2016), 2711-2720. https://doi.org/10.2298/FIL1610711T
  18. K. Ullah, J. Ahmad, M. Arshad and M.D. Sen, Fixed-point convergence results of a three-step iterative process in CAT(0) spaces, Math. Prob. Engin., 2021 (2021), Article ID 5522926, 8 pages.
  19. G.I. Usurelu and M. Postolache, Convergence analysis for a three-step thakur iteration for Suzuki-type nonexpansive mappings with visualization, Symmetry, 11(12) (2019), 1441. https://doi.org/10.3390/sym11121441
  20. S. Weng and D. Wu, Some Convergence theorems of modified proximal point algorithms for nonexpansive mappings in CAT(0) spaces, Results in Nonlinear Anal., 1(2) (2018), 49-57.