DOI QR코드

DOI QR Code

Developmental characteristics and genetic diversity of the two-spotted cricket Gryllus bimaculatus De Geer, 1773 (Orthoptera: Gryllidae) in South Korea

  • Gyu-Dong, Chang (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Su Hyun, Yum (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Jeong-Hun, Song (Industrial Insect and Sericulture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences)
  • Received : 2022.11.28
  • Accepted : 2022.12.15
  • Published : 2022.12.30

Abstract

In this study, we investigated the developmental characteristics and genetic diversity of seven populations of two-spotted crickets (Gryllus bimaculatus De Geer, 1773 (Orthoptera: Gryllidae)) raised in South Korea. Regarding the developmental characteristics of the species, we observed no statistically significant difference in the weight of the nymphs in the six populations we tested. After molting, although weight differences were observed between the populations in each stage of the developmental period, the average weight for each developmental stage was constant. We also analyzed mitochondrial COI gene sequences (DNA barcoding region) of the reared crickets collected from five insect farms and two national insect rearing facilities and the resultant sequences were analyzed together with the 12 sequences from foreign countries specimens obtained from public data. We detected six haplotypes from 111 specimens, indicating a low intraspecific genetic distance (~1.8%). The most dominant haplotype was overwhelmingly haplotype 1, which was found in all South Korean specimens and four specimens from China, Indonesia, and Germany. These findings indicate that the low genetic diversity of South Korean specimens can be explained by the fact that the G. bimaculatus population imported for feed from Japan in the early 2000s became a maternal group that spread throughout cricket farms in South Korea. In order to breed healthy cricket strains, it is necessary to increase genetic diversity by importing them from other countries through appropriate quarantine procedures.

Keywords

Acknowledgement

We are grateful to H.G. Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Korea) for their valuable assistance in maintaining colonies of two-spotted crickets. This work was carried out with the support of "The Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01355902)" Rural Development Administration, Republic of Korea. Conflicts of Interest: The authors declare no conflict of interest.

References

  1. Ahn MY, Hwang JS, Yun EY, Kim MJ, Park KK (2015) Anti-aging effect and gene expression profiling of aged rats treated with G. bimaculatus extract. Toxicol Res 31, 173-180. https://doi.org/10.5487/TR.2015.31.2.173
  2. Ahn MY, Kim BJ, Kim HJ, Jin JM, Yoon HJ, Hwang JS, et al. (2020) Anti-diabetic activity of field cricket glycosaminoglycan by ameliorating oxidative stress. BMC Complement Med Ther 20, 232. https://doi.org/10.1186/s12906-020-03027-x
  3. van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJA (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 73, 1-10. https://doi.org/10.1016/j.jinsphys.2014.12.005
  4. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3, 294-299.
  5. Ghosh S, Lee SM, Jung C, Meyer-Rochow VB (2017) Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol 20, 686-694.
  6. Grau T, Vilcinskas A, Joop G (2017) Probiotic Enterococcus mundtii isolate protects the model insect, Tribolium castaneum, against Bacillus thuringiensis. Front Microbiol 8, 1261. https://doi.org/10.3389/fmicb.2017.01261
  7. Han T, Park SC, Park H (2022) Genetic diversity of insect farm populations of Protaetia brevitarsis seulensis (Kolbe, 1886) (Coleoptera, Scarabaeidae) in South Korea inferred from COI gene sequences. J Natl Park Res 13, 83-103.
  8. Hughes WHO, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58, 1251-1260. https://doi.org/10.1111/j.0014-3820.2004.tb01704.x
  9. van Huis A (2020) Edible crickets, but which species? J Insects Food Feed 6, 91-94. https://doi.org/10.3920/JIFF2020.x001
  10. van Huis A, Itterbeeck J van, Klunder H, Mertens E, Halloran A, Muir G, et al. (2013) Edible insects: Future prospects for food and feed security. FAO Forestry Paper 171. FAO, Italy.
  11. Hwang BB, Chang MH, Lee JH, Heo W, Kim JK, Pan JH, et al. (2019) The edible insect, Gryllus bimaculatus, protects against gut derived inflammatory responses and liver damage in mice after acute alcohol exposure. Nutrients 11, 857. https://doi.org/10.3390/nu11040857
  12. Iba M, Nagao T, Urano A (1995) Effects of population density on growth, behavior, and levels of biogenic amines in the cricket, Gryllus bimaculatus. Zool Sci 12, 695-702. https://doi.org/10.2108/zsj.12.695
  13. Im AR, Yang WK, Park YC, Kim SH, Chae S (2018) Hepatoprotective effects of insect extracts in an animal model of non-alcoholic fatty liver disease. Nutrients 10, 735. https://doi.org/10.3390/nu10060735
  14. Jung CE, Bae YH (2007) Oviposition and temperature-dependent egg hatching by the field cricket, Gryllus bimaculatus De Geer (Orthoptera: Gryllidae). Korean J Soil Zool 12 (1-2), 28-32.
  15. Keum ES, Kim JW, Park DS, Jung CE (2012) Morphological and genetic comparison of Telegryllus emma and Gryllus bimaculatus (Orthoptera: Gryllidae) used for feed insect industry. Korean J Soil Zool 16 (1-2), 42-46.
  16. Kim CH, Park SY, Lee YC, Kim JH, Byun BK (2019) Mass rearing conditions for the production of Gryllus bimaculatus De Geer (Orthoptera: Gryllidae). Korean J Appl Entomol 58(1), 69-76. https://doi.org/10.5656/KSAE.2019.02.1.059
  17. Kim WT, Kim SY, Ji SM, Chang GD, Song JH (2022) Current status and future perspective of industrial insect use in South Korea. Korean J Appl Entomol 61, 221-227.
  18. Kim DY, Kim BM, Park TYS, Cho GH, Kim TW (2022) First record of Teleogryllus (Brachyteleogryllus) marini Otte & Alexander, 1983 (Orthoptera: Gryllidae) in Korea and discussion of its continued misidentification using DNA barcoding. J Asia Pac Entomol 25, 1-8.
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581
  20. King KC, Lively CM (2012) Does genetic diversity limit disease spread in natural host populations? Heredity 109, 199-203. https://doi.org/10.1038/hdy.2012.33
  21. Korean Society of Applied Entomology, Entomological Society of Korea (2022) Check List of Insects from Korea. The 60th anniversary of Korean Society of Applied Entomology, The 50th anniversary of The Entomological Society of Korea.
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
  23. Lee KP, Roh C (2010) Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol Exp Appl 136, 151-163. https://doi.org/10.1111/j.1570-7458.2010.01018.x
  24. Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6, 1110-1116. https://doi.org/10.1111/2041-210X.12410
  25. Liu AJ, Li J, Gomez MI (2020) Factors influencing consumption of edible insects for Chinese consumers. Insects 11, 10.
  26. Moruzzo R, Mancini S, Guidi A (2021) Edible insects and sustainable development goals. Insects 12, 557. https://doi.org/10.3390/insects12060557
  27. Panagiotopoulou H, Baca M, Baca K, Sienkiewicz P, Slipinski P, Zmihorski M (2016) Genetic identification of a non-native species introgression into wild population of the field cricket, Gryllus campestris (Orthoptera: Gryllidae) in Central Europe. Eur J Entomol 113, 446-455. https://doi.org/10.14411/eje.2016.058
  28. Park YK, Lee HG, Choi YC (2013) Effects of rearing density on food consumption, adult mortality, and mean number of hatchlings of Gryllus bimaculatus (Orthoptera: Gryllidae). J Sericul Entomol Sci 51, 89-94.
  29. Phesatcha B, Phesatcha K, Viennaxay B, Matra M, Totakul P, Wanapat M (2022) Cricket meal (Gryllus bimaculatus) as a protein supplement on in vitro fermentation characteristics and methane mitigation. Insects 13, 129. https://doi.org/10.3390/insects13020129
  30. Riekkinen K, Vakevainen K, Korhonen J (2022) The effect of substrate on the nutrient content and fatty acid composition of edible insects. Insects 13, 590. https://doi.org/10.3390/insects13070590
  31. Rodriguez-Rodriguez M, G. Barroso F, Fabrikov D, Sanchez-Muros MJ (2022) In vitro crude protein digestibility of insects: A review. Insects 13, 682. https://doi.org/10.3390/insects13080682
  32. Rural Development Administration (2014) Guidebook of Industrial Insects. Rural Development Administration, Wanju, Korea. (In Korean)
  33. Rural Development Administration (2017) Standards and Specifications for Breeding of Industrial Insects. Rural Development Administration, Wanju, Korea. (In Korean)
  34. Seo DH, Hwang SY, Han J, Koh SK, Kim I, Ryu KS, et al. (2004) Immune-enhancing activity screening on extracts from two crickets, Gryllus bimaculatus and Teleogryllus emma. Entomol Res 34, 207-211. https://doi.org/10.1111/j.1748-5967.2004.tb00115.x
  35. Song MH, Han MH, Kwak KW, Lee S, Kim ES, Park KH, et al. (2016) Effect of different diets on growth and development of the two-spotted cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). Int J Indust Entomol 33, 59-62. https://doi.org/10.7852/ijie.2016.33.2.59
  36. Song MH, Lee HS, Park K (2018) Effects of dietary animal feed on the growth performance of edible insects. J Life Sci 28(5), 563-568. https://doi.org/10.5352/JLS.2018.28.5.563
  37. Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5, 439-448. https://doi.org/10.1023/B:COGE.0000041030.76598.cd
  38. Srivathsan A, Meier R (2012) On the inappropriate use of Kimura2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190-194. https://doi.org/10.1111/j.1096-0031.2011.00370.x
  39. Tantrawatpan C, Saijuntha W, Pilab W, Sakdakham K, Pasorn P, Thanonkeo S, et al. (2011) Genetic differentiation among populations of Brachytrupes portentosus (Lichtenstein 1796) (Orthoptera: Gryllidae) in Thailand and the Lao PDR: the Mekong River as a biogeographic barrier. Bull Entomol Res 101, 687-696. https://doi.org/10.1017/s000748531100023x
  40. Tsukamoto Y, Kataoka H, Nagasawa H, Nagata S (2014) Mating changes the female dietary preference in the two-spotted cricket, Gryllus bimaculatus. Front Physiol 95, 1-6.
  41. Veldkamp T, Meijer N, Alleweldt F, Deruytter D, Van Campenhout L, Gasco L, et al. (2022) Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: A SUSINCHAIN perspective. Insects 13, 281. https://doi.org/10.3390/insects13030281
  42. Verneau F, Amato M, La Barbera F (2021) Edible insects and global food security. Insects 12, 472. https://doi.org/10.3390/insects12050472
  43. Wilkinson K, Muhlhausler B, Motley C, Crump A, Bray H, Ankeny R (2018) Australian consumers' awareness and acceptance of insects as food. Insects 9, 44. https://doi.org/10.3390/insects9020044
  44. Zuk-Golaszewska K, Galecki R, Obremski K, Smetana S, Figiel S, Golaszewski J (2022) Edible insect farming in the context of the EU regulations and marketing-An overview. Insects 13, 446. https://doi.org/10.3390/insects13050446