DOI QR코드

DOI QR Code

Computerized bone age estimation system based on China-05 standard

  • 투고 : 2021.09.03
  • 심사 : 2021.12.22
  • 발행 : 2022.02.25

초록

The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.

키워드

참고문헌

  1. Acheson, R.M., Vicinus, J.H. and Fowler, G.B. (1966), "Studies in the reliability of assessing skeletal maturity from x-rays: Part III. Greulich-Pyle Atlas and Tanner-Whitehouse method contrasted", Human Biol., 204-218.
  2. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  3. Alshamrani, K., Messina, F. and Offiah, A.C. (2019), "Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis", Eur. Radiol., 29(6), 2910-2923. https://doi.org/10.1007/s00330-018-5792-5.
  4. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  5. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  6. Beunen, G. and Cameron, N. (1980), "The reproducibility of TW2 skeletal age assessments by a self-taught assessor", Annal. Human Biol., 7(2), 155-162. https://doi.org/10.1080/03014468000004181.
  7. Bull, R.K., Edwards, P.D., Kemp, P.M., Fry, S. and Hughes, I.A. (1999), "Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods", Arch. Dis. Child., 81(2), 172-173. https://doi.org/10.1136/adc.81.2.172.
  8. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  9. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/ANR.2021.10.2.175.
  10. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  11. Dong, J., Cong, Y., Sun, G., Fang, Z. and Ding, Z. (2021), "Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation", IEEE T. Pattern Anal., 1-1. https://doi.org/10.1109/TPAMI.2021.3128560.
  12. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  13. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  14. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  15. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex., 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.
  16. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141.
  17. Fazaeli, A., Habibi, M. and Ekrami, A.A. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition %J Metallurgical Engineering", Metall. Eng., 19(2), 84-93. https://doi.org/10.22076/me.2017.41458.1064.
  18. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control, 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  19. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  20. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  21. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronaut., 121, 221-240. https://doi.org/https://doi.org/10.1016/j.actaastro.2016.01.003.
  22. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  23. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  24. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  25. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  26. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  27. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  28. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  29. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  30. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  31. Ghazanfari, A., Assempour, A., Habibi, M. and Hashemi, R. (2016), "Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak-Kuczynski model", Modares Mech. Eng., 16(1), 137-143.
  32. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  33. Guo, Y., Liang, H. and Deng, H. (2012), "Advances in the molecular genetics of brachydactyly", Yi Chuan = Hereditas, 34(12), 1522-1528. https://doi.org/10.3724/sp.j.1005.2012.01522.
  34. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  35. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  36. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2016), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 232(8), 625-636. https://doi.org/10.1177/1464420716642258.
  37. Habibi, M., Hashemi, R., Fallah Tafti, M. and Assempour, A. (2018), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009.
  38. Halabi, S.S., Prevedello, L.M., Kalpathy-Cramer, J., Mamonov, A.B., Bilbily, A., Cicero, M., Pan, I., Pereira, L.A., Sousa, R.T., Abdala, N., Kitamura, F.C., Thodberg, H.H., Chen, L., Shih, G., Andriole, K., Kohli, M.D., Erickson, B.J. and Flanders, A.E. (2018), "The RSNA pediatric bone age machine learning challenge", Radiology. 290(2), 498-503. https://doi.org/10.1148/radiol.2018180736.
  39. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex., 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  40. He, S., Guo, F., Zou, Q. and HuiDing (2020a), "MRMD2.0: A python tool for machine learning with feature ranking and reduction", Curr. Bioinform., 15(10), 1213-1221. https://doi.org/10.2174/1574893615999200503030350.
  41. He, Y., Dai, L. and Zhang, H. (2020b), "Multi-branch deep residual learning for clustering and beamforming in user-centric network", IEEE Commun. Lett., 24(10), 2221-2225. https://doi.org/10.1109/LCOMM.2020.3005947.
  42. Hosseini, S.M.R., Habibi, M. and Assempour, A. (2018), "Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers", Modares Mech. Eng., 18(6), 174-181.
  43. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  44. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  45. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  46. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  47. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  48. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  49. Larson, D.B., Chen, M.C., Lungren, M.P., Halabi, S.S., Stence, N.V. and Langlotz, C.P. (2018), "Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs", Radiology. 287(1), 313-322. https://doi.org/10.1148/radiol.2017170236.
  50. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  51. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  52. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  53. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  54. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  55. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  56. Liu, R., Wang, X., Lu, H., Wu, Z., Fan, Q., Li, S. and Jin, X. (2021c), "SCCGAN: Style and characters inpainting based on CGAN", Mobile Netw. Appl., 26(1), 3-12. https://doi.org/10.1007/s11036-020-01717-x.
  57. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021d), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  58. Lv, Z., Li, Y., Feng, H. and Lv, H. (2021a), "Deep learning for security in digital twins of cooperative intelligent transportation systems", IEEE T. Intell. Transp., 1-10. https://doi.org/10.1109/TITS.2021.3113779.
  59. Lv, Z., Qiao, L., Hossain, M.S. and Choi, B.J. (2021b), "Analysis of using blockchain to protect the privacy of drone big data", IEEE Netw., 35(1), 44-49. https://doi.org/10.1109/MNET.011.2000154.
  60. Lv, Z., Singh, A.K. and Li, J. (2021c), "Deep learning for security problems in 5g heterogeneous networks", IEEE Netw., 35(2), 67-73. https://doi.org/10.1109/MNET.011.2000229.
  61. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  62. Medicus, H., Gron, A.M. and Moorrees, C.F.A. (1971), "Reproducibility of rating stages of osseous development. (Tanner-Whitehouse system)", 35(3), 359-371. https://doi.org/10.1002/ajpa.1330350311.
  63. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  64. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  65. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  66. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  67. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", 12(1), 2050010. https://doi.org/10.1142/s1758825120500106.
  68. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020b), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin Wall. Struct., 149, 106669. https://doi.org/https://doi.org/10.1016/j.tws.2020.106669.
  69. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020c), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4), 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  70. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  71. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  72. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry, 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.https://doi.org/10.002.
  73. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites micro-tubes", Sci. Rep., 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w.
  74. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.
  75. Raschka, S. (2015), Python machine learning, Packt Publishing Ltd, Mumbai, India.
  76. Roche, A.F., Roberts, J. and Hamill, P.V. (1974), Skeletal Maturity of Children 6-11 Years: Racial, Geographic Area, and Socioeconomic Differentials, United States, National Center for Health Statistics, Washington, D.C., U.S.A.
  77. Roche, A.F., Roberts, J. and Hamill, P.V. (1978), Skeletal Maturity of Youths 12-17 Years: Racial, Geographic Area, and Socioeconomic Differentials, National Center for Health Statistics, Washington, D.C., U.S.A.
  78. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  79. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  80. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  81. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  82. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  83. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  84. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  85. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  86. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  87. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  88. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  89. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  90. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  91. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  92. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  93. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  94. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.
  95. Shaoyan, Z., Zhenlie, W. and Xunzhang, S. (2006), "The standards of skeletal maturity of hand and wrist for Chinese-China 05 II. Reliability of assessing skeletal age by RUS-CHN and TW_3-C carpal methods", Chinese J. Sports Med., 6. https://doi.org/10.3969/j.issn.1000-6710.2000.01.003
  96. Shariati, A., Jung, D.w., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  97. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  98. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  99. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  100. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  101. Son, S.J., Song, Y., Kim, N., Do, Y., Kwak, N., Lee, M.S. and Lee, B.D. (2019), "TW3-based fully automated bone age assessment system using deep neural networks", IEEE Access, 7, 33346-33358. https://doi.org/10.1109/ACCESS.2019.2903131.
  102. Song, J., Gong, P., Gao, C., Han, Q., Li, X., Zhu, Z., Chen, H., Yu, Y. and Fang, X. (2019), "Construction and clinical preliminary validation of an automaticbone age assessment model based on deep learning", Chinese J. Radiol., 974-978.
  103. Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A. (2017). "Inception-v4, inception-resnet and the impact of residual connections on learning", Proceeding of the 31st AAAI Conference on Artificial Intelligence, California, U.S.A. February.
  104. Thompson, N.C., Greenewald, K., Lee, K. and Manso, G.F. (2020), "The computational limits of deep learning", arXiv preprint arXiv:2007.05558.
  105. Wang, T., Wei, X., Wang, J., Huang, T., Peng, H., Song, X., Cabrera, L.V. and Perez-Jimenez, M.J. (2020a), "A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies", Eng. Appl. Artif. Intell., 92, 103680. https://doi.org/10.1016/j.engappai.2020.103680.
  106. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  107. Wang, K., Wang, H. and Li, S. (2022), "Renewable quantile regression for streaming datasets", Knowl. Based Syst., 235, 107675. https://doi.org/10.1016/j.knosys.2021.107675.
  108. Wenzel, A. and Melsen, B.J.H.b. (1982), "Replicability of assessing radiographs by the Tanner and Whitehouse-2 method", Human Biol., 575-581.
  109. Woo, S., Park, J., Lee, J.Y. and Kweon, I.S. (2018). "Cbam: Convolutional block attention module", Proceedings of the European conference on computer vision (ECCV), Munich, Germany, September.
  110. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  111. Wu, X., Zheng, W., Xia, X. and Lo, D. (2021), "Data quality matters: A case study on data label correctness for security bug report prediction", IEEE T. Softw. Eng., 1-1. https://doi.org/10.1109/TSE.2021.3063727.
  112. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  113. Yildiz, M., Guvenis, A., Guven, E., Talat, D. and Haktan, M. (2011), "Implementation and statistical evaluation of a web-based software for bone age assessment", J. Med. Syst., 35(6), 1485-1489. https://doi.org/10.1007/s10916-009-9425-z.
  114. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic highorder computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Proc., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  115. Zhang, S.Y., Liu, G., Ma, C.G., Han, Y.S., Shen, X.Z., Xu, R.L. and Thodberg, H.H. (2013), "Automated determination of bone age in a modern Chinese population", Int. Scholar. Res. Notices, 2013, 874570. https://doi.org/10.5402/2013/874570.
  116. Zhang, A., Sayre, J.W., Vachon, L., Liu, B.J. and Huang, H.K. (2009), "Racial differences in growth patterns of children assessed on the basis of bone age", Radiology, 250(1), 228-235. https://doi.org/10.1148/radiol.2493080468.
  117. Zhang, B., Chen, Y.X., Wang, Z.G., Li, J.Q. and Ji, H.H. (2021a), "Influence of mach number of main flow on film cooling characteristics under supersonic condition", Symmetry, 13(1), 127. https://doi.org/10.3390/sym13010127.
  118. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021b), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  119. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M.S.H. (2021c), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol. Struct. Dyn., 39(9), 3128-3143. https://doi.org/10.1080/07391102.2020.1760939.
  120. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021d), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  121. Zhang, Y., Shi, X., Zhang, H., Cao, Y. and Terzija, V. (2022), "Review on deep learning applications in frequency analysis and control of modern power system", Int. J. Electr. Power, 136, 107744. https://doi.org/10.1016/j.ijepes.2021.107744.
  122. Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L. and Ling, H. (2019), "M2Det: A single-shot object detector based on multi-level feature pyramid network", Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 9259-9266. https://doi.org/10.1609/aaai.v33i01.33019259.
  123. Zhao, C., Liu, X., Zhong, S., Shi, K., Liao, D. and Zhong, Q. (2021a), "Secure consensus of multi-agent systems with redundant signal and communication interference via distributed dynamic event-triggered control", ISA T., 112, 89-98. https://doi.org/10.1016/j.isatra.2020.11.030.
  124. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021b), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  125. Zheng, W., Xun, Y., Wu, X., Deng, Z., Chen, X. and Sui, Y. (2021), "A comparative study of class rebalancing methods for security bug report classification", IEEE T. Reliab., 70(4), 1658-1670. https://doi.org/10.1109/TR.2021.3118026.
  126. Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G. and Lu, J. (2021), "Bridging the theoretical bound and deep algorithms for open set domain adaptation", IEEE T. Neural Network., 1-15. https://doi.org/10.1109/TNNLS.2021.3119965.
  127. Zhou, W., Yu, L., Zhou, Y., Qiu, W., Wu, M.W. and Luo, T. (2018), "Local and global feature learning for blind quality evaluation of screen content and natural scene images", IEEE T. Image Process., 27(5), 2086-2095. https://doi.org/10.1109/TIP.2018.2794207.
  128. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020a), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  129. Zhou, X.L., Wang, E.G., Lin, Q., Dong, G.P., Wu, W., Huang, K., Lai, C., Yu, G., Zhou, H.C., Ma, X.H., Jia, X., Shi, L., Zheng, Y.S., Liu, L.X., Ha, D., Ni, H., Yang, J. and Fu, J.F. (2020b), "Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system", Quant Imag. Med. Surg., 10(3), 657-667. https://doi.org/10.21037/qims.2020.02.20.