DOI QR코드

DOI QR Code

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • 투고 : 2020.10.20
  • 심사 : 2021.11.10
  • 발행 : 2022.02.25

초록

This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

키워드

참고문헌

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  2. Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked microbeams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  3. Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embeddedin an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  5. Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  6. Akbas, S.D. (2017c), Static, Vibration, and Buckling Analysis of Nanobeams, In Nanomechanics, Intech, Rijeka, Croatia.
  7. Akbas, S.D. (2018a), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  8. Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  9. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng. 40, 392. https://doi.org/10.1007/s40430-018-1315-1.
  10. Akbas, S.D. (2019a), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.
  11. Akbas, S.D. (2019b), "Longitudinal forced vibration analysis of porous a nanorod", J. Eng. Sci. Des., 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
  12. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  13. Alotta, G., Failla, G. and Zingales, M. (2014), "Finite element method for a nonlocal Timoshenko beam model", Finite Elem. Anal. Des., 89, 77-92. https://doi.org/10.1016/j.finel.2014.05.011.
  14. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
  15. Barretta, R. and Marotti de Sciarra, F. (2015), "Analogies between nonlocal and local Bernoulli-Euler nanobeams", Arch. Appl. Mech., 85(1), 89-99. https://doi.org/10.1007/s00419-014-0901-7.
  16. Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113.
  17. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
  18. Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
  19. Civalek, O ., Uzun, B., Yayli, M.O . and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  20. Paola, M.D., Failla, G. and Zingales, M. (2014), "Mechanically based nonlocal Euler-Bernoulli beam model", J. Nanomech. Micromech., 4(1), A4013002. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000077.
  21. Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
  22. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  24. Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
  25. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.049.
  26. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  27. Hibbeller, R.C. (2016), Mechanics of Materials, Pearson Educacion, London, U.K.
  28. Karlicic, D., Murmu, T., Adhikari, S. and McCarthy, M. (2016), Non-local Structural Mechanics, John Wiley & Sons, New Jersey, U.S.A.
  29. Nguyen, N.T., Kim, N.I. and Lee, J. (2015), "Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams", Finite Elem. Anal. Des., 106, 65-72. https://doi.org/10.1016/j.finel.2015.07.012.
  30. Nikam, R.D. and Sayyad, A.S. (2018), "A unified nonlocal formulation for bending, buckling and free vibration analysis of nanobeams", Mech. Adv. Mater. Struct., 27(10), 807-815. https://doi.org/10.1080/15376494.2018.1495794.
  31. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
  32. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.
  33. Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solid. Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.
  34. Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008.
  35. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  36. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  37. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  38. Vinyas, M. and Kattimani, S.C. (2017a), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
  39. Vinyas, M. and Kattimani, S.C. (2017b), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
  40. Vinyas, M. and Kattimani, S.C. (2017c), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
  41. Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018a), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
  42. Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018b), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8
  43. Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).
  44. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.