References
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked microbeams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2016b), "Forced vibration analysis of viscoelastic nanobeams embeddedin an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017c), Static, Vibration, and Buckling Analysis of Nanobeams, In Nanomechanics, Intech, Rijeka, Croatia.
- Akbas, S.D. (2018a), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng. 40, 392. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2019a), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/JCAMECH.2019.281285.392.
- Akbas, S.D. (2019b), "Longitudinal forced vibration analysis of porous a nanorod", J. Eng. Sci. Des., 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Alotta, G., Failla, G. and Zingales, M. (2014), "Finite element method for a nonlocal Timoshenko beam model", Finite Elem. Anal. Des., 89, 77-92. https://doi.org/10.1016/j.finel.2014.05.011.
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Barretta, R. and Marotti de Sciarra, F. (2015), "Analogies between nonlocal and local Bernoulli-Euler nanobeams", Arch. Appl. Mech., 85(1), 89-99. https://doi.org/10.1007/s00419-014-0901-7.
- Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113.
- Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
- Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
- Civalek, O ., Uzun, B., Yayli, M.O . and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Paola, M.D., Failla, G. and Zingales, M. (2014), "Mechanically based nonlocal Euler-Bernoulli beam model", J. Nanomech. Micromech., 4(1), A4013002. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000077.
- Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.049.
- Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
- Hibbeller, R.C. (2016), Mechanics of Materials, Pearson Educacion, London, U.K.
- Karlicic, D., Murmu, T., Adhikari, S. and McCarthy, M. (2016), Non-local Structural Mechanics, John Wiley & Sons, New Jersey, U.S.A.
- Nguyen, N.T., Kim, N.I. and Lee, J. (2015), "Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams", Finite Elem. Anal. Des., 106, 65-72. https://doi.org/10.1016/j.finel.2015.07.012.
- Nikam, R.D. and Sayyad, A.S. (2018), "A unified nonlocal formulation for bending, buckling and free vibration analysis of nanobeams", Mech. Adv. Mater. Struct., 27(10), 807-815. https://doi.org/10.1080/15376494.2018.1495794.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.
- Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solid. Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.
- Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008.
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Vinyas, M. and Kattimani, S.C. (2017a), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
- Vinyas, M. and Kattimani, S.C. (2017b), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
- Vinyas, M. and Kattimani, S.C. (2017c), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
- Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018a), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
- Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018b), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8
- Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.