DOI QR코드

DOI QR Code

The determination of effect of TiO2 on dynamic behavior of scaled WPC warehouse by OMA

  • Tuhta, Sertac (Ondokuz Mayis University, Faculty of Engineering, Department of Civil Engineering)
  • 투고 : 2021.10.01
  • 심사 : 2021.11.03
  • 발행 : 2022.01.25

초록

The dynamic properties (frequencies, mode shapes, damping ratios) of the scaled WPC warehouse are compared using the operational modal analysis approach to the dynamic parameters (frequencies, mode shapes, damping ratios) of the full outer surface of titanium dioxide, 70 micron in thickness. Micro tremor ambient vibration data on ground level was used to provide ambient excitation. For the output-only modal identification, Enhanced Frequency Domain Decomposition (EFDD) was used. This study discovered a strong correlation between mode shapes. Titanium dioxide applied to the entire outer surface of the scaled WPC warehouse results in an average 14.05 percent difference in frequency values and 7.61 percent difference in damping ratios, demonstrating that nanomaterials can be used to increase rigidity in structures, or for reinforcement. Another significant finding in the study was the highest level of adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to WPC structure surfaces.

키워드

참고문헌

  1. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  2. Aliev, F.A. and Larin, V.B. (1998), Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, CRC Press, Florida, U.S.A.
  3. Alvin, K.F. and Park, K.C. (1994), "Second-order structural identification procedure via state-space-based system identification", AIAA Journal, 32(2), 397-406. https://doi.org/10.2514/3.11997.
  4. ANSI S2.47 (1990), Vibration of buildings-guidelines for the measurement of vibrations and evaluation of their effects on buildings, American National Standards Institute; Washington, DC, U.S.A.
  5. ARTeMIS (2004), Ambient Response Testing and Modal Identification Software ARTeMIS Extractor 3.3.; Structural Vibration Solution A/S Aalborg East, Denmark. www.svibs.com
  6. Balmes, E. (1997), "New results on the identification of normal modes from experimental complex modes", Mech. Syst. Signal Proc., 11(2), 229-243. https://doi.org/10.1006/mssp.1996.0058.
  7. Bendat, J.S. (1998), Nonlinear Systems Techniques and Applications, Wiley, New Jersey, U.S.A.
  8. Brincker, R., Zhang, L. and Andersen, P. (2000), "Modal identification from ambient responses using frequency domain decomposition", Proceedings of the 18th International Modal Analysis Conference (IMAC), Texas, U.S.A., February.
  9. Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
  10. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2020.7.1.039.
  11. Eren, M. and Aydogdu, M. (2018), "Finite strain nonlinear longitudinal vibration of nanorods", Adv. Nano Res., 6(4), 323-337. https://doi.org/10.12989/anr.2018.6.4.323.
  12. Guo, Y., He, D., Xie, A., Qu, W., Tang, Y., Zhou, L. and Zhu, R. (2019), "The electrochemical oxidation of hydroquinone and catechol through a novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2,/sub> composite film electrode", Polymers, 11(11), 1907. https://doi.org/10.3390/polym11111907.
  13. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  14. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215
  15. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229
  16. Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020c), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307
  17. Ibrahim, S.R. (1977), "Random decrement technique for modal identification of structures", J. Spacecr. Rockets, 14(11), 696-700. https://doi.org/10.2514/3.57251.
  18. Jacobsen, N.J., Andersen, P., and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis", Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, September.
  19. Juang, J.N. (1994), Applied System Identification, Prentice Hall, New Jersey, U.S.A.
  20. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng., 82(1), 35-45. https://doi.org/10.1115/1.3662552.
  21. Kasimzade, A.A. and Tuhta, S. (2017), "Application of OMA on the bench-scale earthquake simulator using micro tremor data", Struct. Eng. Mech., 61(2), 267-274. https://doi.org/10.12989/sem.2017.61.2.267.
  22. Kasimzade, A.A. and Tuhta, S. (2017), "OMA of model steel structure retrofitted with CFRP using earthquake simulator", Earthq Struct., 12(6), 689-697. https://doi.org/10.12989/eas.2017.12.6.689.
  23. Lin, X., Li, M., Li, Y. and Chen, W. (2015), "Enhancement of the catalytic activity of ordered mesoporous TiO2,/sub> by using carbon fiber support and appropriate evaluation of synergy between surface adsorption and photocatalysis by Langmuir-Hinshelwood (L-H) integration equation", RSC Adv., 5(127), 105227-105238. https://doi.org/10.1039/C5RA21083F.
  24. Ljung, L. (1999), System Identification: Theory for the User, Prentice Hall, New Jersey, U.S.A.
  25. Lus, H., De Angelis, M., Betti, R. and Longman, R.W. (2003), "Constructing second-order models of mechanical systems from identified state space realizations. Part I: Theoretical discussions", J. Eng. Mech., 129(5), 477-488. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(477).
  26. Ma, B., Li, H., Li, X., Mei, J. and Lv, Y. (2016), "Influence of nano-TiO2,/sub> on physical and hydration characteristics of fly ash-cement systems", Constr. Build. Mater., 122, 242-253. https://doi.org/10.1016/j.conbuildmat.2016.02.087.
  27. Marwala, T. (2010), Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer Science-Business Media, Berlin, Germany.
  28. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419
  29. Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.
  30. Roeck, G.D. (2003), "The state-of-the-art of damage detection by vibration monitoring: The SIMCES experience", J. Struct. Control, 10(2), 127-134. https://doi.org/10.1002/stc.20.
  31. Sestieri, A. and Ibrahim, S.R. (1994), "Analysis of errors and approximations in the use of modal coordinates", J. Sound Vib., 177(2), 145-157. https://doi.org/10.1006/jsvi.1994.1424.
  32. Trifunac, M.D. (1972), "Comparisons between ambient and forced vibration experiments", Earthq. Eng. Struct. Dyn., 1(2), 133-150. https://doi.org/10.1002/eqe.4290010203.
  33. Tseng, D.H., Longman, R.W. and Juang, J.N. (1994), "Identification of the structure of the damping matrix in second order mechanical systems", Spaceflight Mech., 167-190.
  34. Tuhta, S. (2018), "GFRP retrofitting effect on the dynamic characteristics of model steel structure", Steel Compos. Struct., 28(2), 223-231. https://doi.org/10.12989/scs.2018.28.2.223.
  35. Tuhta, S. (2019), "OMA of model chimney using Bench-Scale earthquake simulator", Earthq. Struct., 16(3), 321-327. https://doi.org/10.12989/eas.2019.16.3.321.
  36. Uzun, B. and Civalek, O . (2019), "Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., 7(2), 99-108. https://doi.org/10.12989/anr.2019.7.2.099.
  37. Wang, J., Liu, G., Fan, K., Zhao, D., Liu, B., Jiang, J., Qian, D., Yang, C. and Li, J. (2018), "N-doped carbon coated anatase TiO2,/sub> nanoparticles as superior Na-ion battery anodes", J. Colloid Interf. Sci., 517, 134-143. https://doi.org/10.1016/j.jcis.2018.02.001.
  38. Wang, L., Guo, F., Lin, Y., Yang, H. and Tang, S.W. (2020), "Comparison between the effects of phosphorous slag and fly ash on the CSH structure, long-term hydration heat and volume deformation of cement-based materials", Constr. Build. Mater., 250, 118807. https://doi.org/10.1016/j.conbuildmat.2020.118807.
  39. Wang, L., Luo, R., Zhang, W., Jin, M. and Tang, S. (2020), "Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete", Fractals, 29(2), 2140004. https://doi.org/10.1142/S0218348X21400041.
  40. Wang, L., Jin, M., Wu, Y., Zhou, Y. and Tang, S. (2021), "Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials", Constr. Build. Mater., 272, 121952. https://doi.org/10.1016/j.conbuildmat.2020.121952.
  41. Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z. and Su, J. (2021), "The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete", Constr. Build. Mater., 282, 122706. https://doi.org/10.1016/j.conbuildmat.2021.122706.
  42. Xiong, S., Yin, Z., Zhou, Y., Peng, X., Yan, W., Liu, Z. and Zhang, X. (2013), "The dual-frequency (20/40 kHz) ultrasound assisted photocatalysis with the active carbon fiber-loaded Fe3±TiO2,/sub> as photocatalyst for degradation of organic dye", Bull. Korean Chem. Soc., 34(10), 3039-3045. https://doi.org/10.5012/bkcs.2013.34.10.3039.
  43. Zhang, P., Wang, K., Wang, J., Guo, J., Hu, S. and Ling, Y. (2020), "Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2", Ceram. Int., 46(12), 20027-20037. https://doi.org/10.1016/j.ceramint.2020.05.074.
  44. Zhang, P., Gao, Z., Wang, J. and Wang, K. (2021), "Numerical modeling of rebar-matrix bond behaviors of nano-SiO2 and PVA fiber reinforced geopolymer composites", Ceram. Int., 47(8), 11727-11737. https://doi.org/10.1016/j.ceramint.2021.01.012.