DOI QR코드

DOI QR Code

A hybrid conventional computer simulation via GDQEM and Newmark-beta techniques for dynamic modeling of a rotating micro nth-order system

  • Fan, Linyuan (College of Mathematics and Data Science (College of Software), Minjiang University) ;
  • Zhang, Xu (Information Technology Center, Jingchu Institute of Technology) ;
  • Zhao, Xiaoyang (Birmingham City University, School of Computing and Digital Technology)
  • Received : 2021.08.14
  • Accepted : 2021.12.05
  • Published : 2022.02.25

Abstract

In this paper, the free and forced vibration analysis of rotating cantilever nanoscale cylindrical beams and tubes is investigated under the external dynamic load to examine the nonlocal effect. A couple of nonlocal strain gradient theories with different beams and tubes theories, involving the Euler-Bernoulli, Timoshenko, Reddy beam theory along with the higher-order tube theory, are assumed to the mathematic model of governing equations employing the Hamilton principle in order to derive the nonlocal governing equations related to the local and accurate nonlocal boundary conditions. The two-dimensional functional graded material (2D-FGM), made by the axially functionally graded (AFG) in conjunction with the porosity distribution in the radial direction, is considered material modeling. Finally, the derived Partial Differential Equations (PDE) are solved via a couple of the generalized differential quadrature element methods (GDQEM) with the Newmark-beta techniques for the time-dependent results. It is indicated that the boundary conditions equations play a crucial task in responding to nonlocal effects for the cantilever structures.

Keywords

Acknowledgement

This work was supported by Special Fund granted by Minjiang University.

References

  1. Abouelregal, A.E., Ahmad, H., Gepreeld, K.A. and Thounthong, P. (2021), "Modelling of vibrations of rotating nanoscale beams surrounded by a magnetic field and subjected to a harmonic thermal field using a state-space approach", Eur. Phys. J. Plus, 136(3), 268. http://doi.org/10.1140/epjp/s13360-021-01257-7.
  2. Akbas, S.D. (2018a), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. http://doi.org/10.12989/anr.2018.6.3.219.
  3. Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  4. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  5. Al-Furjan, M.S.H., Fereidouni, M., Sedghiyan, D., Habibi, M. and Jung, D.w. (2021b), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 257, 113146. https://doi.org/10.1016/j.compstruct.2020.113146.
  6. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021c), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  7. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.
  8. Al-Furjan, M.S.H., Habibi, M., rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  9. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020c), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  10. Al-Furjan, M.S.H., hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021d), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  11. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel. Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  12. Aranda-Ruiz, J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033.
  13. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel. Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  14. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  15. Asghar, S., Naeem Muhammad, N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/CAC.2020.25.2.133.
  16. Atanasov, M.S. and Stojanovic, V. (2020), "Nonlocal forced vibrations of rotating cantilever nano-beams", Eur. J. Mech. A Solid., 79, 103850. https://doi.org/10.1016/j.euromechsol.2019.103850.
  17. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. http://doi.org/10.12989/anr.2018.6.3.257.
  18. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  19. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  20. Baghani, M., Mohammadi, M. and Farajpour, A. (2016), "Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy", Int. J. Appl. Mech., 8(4), 1650048. https://doi.org/10.1142/s1758825116500484.
  21. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  22. Bai, Y., Suhatril, M., Cao, Y., Forooghi, A. and Assilzadeh, H. (2021), "Hygro-thermo-magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01218-1.
  23. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  24. Belhadj, A., Boukhalfa, A. and Belalia, S.A. (2017), "Free vibration analysis of a rotating nanoshaft based SWCNT", Eur. Phys. J. Plus, 132(12), 513. https://doi.org/10.1140/epjp/i2017-11783-2.
  25. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E., Tounsi, A.J.S. and Structures, C. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel. Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  26. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. http://doi.org/10.12989/anr.2018.6.3.279.
  27. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  28. Boutaleb, S., Benrahou Kouider, H., Bakora, A., Algarni, A., Bousahla Abdelmoumen, A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  29. Chen, C.N. (2002), "Dynamic response of Timoshenko beam structures solved by DQEM using EDQ", Proceedings of ASME 2002 Pressure Vessels and Piping Conference, Vencouver, Canada, August.
  30. Chen, D., Zheng, S., Wang, Y., Yang, L. and Li, Z. (2020), "Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis", Eur. J. Mech. A Solid, 84, 104083. https://doi.org/10.1016/j.euromechsol.2020.104083.
  31. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  32. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  33. Ding, H., Bao, X., Jamili-Shirvan, Z., Jin, J., Deng, L., Yao, K., Gong, P. and Wang, X. (2021), "Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles", Mater. Des., 210, 110108. https://doi.org/10.1016/j.matdes.2021.110108.
  34. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  35. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  36. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  37. Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory", J. Electromagnet. Wave., 32(2), 138-169. https://doi.org/10.1080/09205071.2017.1369903.
  38. Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169.
  39. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017a), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
  40. Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.
  41. Fang, J., Zheng, S., Xiao, J. and Zhang, X. (2020), "Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment", Aerosp. Sci. Technol., 106, 106146. https://doi.org/10.1016/j.ast.2020.106146.
  42. Feng, Y., Zhang, B., Liu, Y., Niu, Z., Dai, B., Fan, Y. and Chen, X. (2021), "A 200-225-GHz manifold-coupled multiplexer utilizing metal waveguides", IEEE T. Microw. Theory., 69(12), 5327-5333. https://doi.org/10.1109/TMTT.2021.3119316.
  43. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  44. Gao, W. and Wang, J. (2014), "Synthetic micro/nanomotors in drug delivery", Nanoscale, 6(18), 10486-10494. https://doi.org/10.1039/C4NR03124E.
  45. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  46. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  47. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  48. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  49. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  50. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  51. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronaut., 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  52. Ghadiri, M. and Shafiei, N. (2017), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  53. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  54. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  55. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  56. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel. Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197.
  57. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  58. Guo, S., He, Y., Liu, D., Lei, J. and Li, Z. (2018), "Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving and rotating nanobeams based on nonlocal strain gradient theory", Microsyst. Technol., 24(2), 963-977. https://doi.org/10.1007/s00542-017-3441-6.
  59. Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  60. Habibi, M., Darabi, R., Sa, J.C.D. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  61. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel. Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  62. Hao-nan, L., Cheng, L., Ji-ping, S. and Lin-quan, Y. (2021), "Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory", J. Vib. Eng. Technol., 9(6), 1155-1173. https://doi.org/10.1007/s42417-021-00288-9.
  63. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel. Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
  64. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 10-19. https://doi.org/10.1007/s00366-021-01456-x.
  65. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  66. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  67. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  68. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021d), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7.
  69. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  70. Hussain, M., Naeem Muhammad, N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  71. Ilkhani, M.R. and Hosseini-Hashemi, S.H. (2016), "Size dependent vibro-buckling of rotating beam based on modified couple stress theory", Compos. Struct., 143, 75-83. https://doi.org/10.1016/j.compstruct.2016.02.013.
  72. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  73. Karami, G., Malekzadeh, P. and Shahpari, S.A. (2003), "A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions", Eng. Struct., 25(9), 1169-1178. https://doi.org/10.1016/S0141-0296(03)00065-8.
  74. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  75. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  76. Klapper, Y., Sinha, N., Ng, T.W.S. and Lubrich, D. (2010), "A rotational DNA nanomotor driven by an externally controlled electric field", Small, 6(1), 44-47. https://doi.org/10.1002/smll.200901106.
  77. Li, J., Wang, X., Zhao, L., Gao, X., Zhao, Y. and Zhou, R. (2014), "Rotation motion of designed nano-turbine", Sci. Rep., 4(1), 5846. https://doi.org/10.1038/srep05846.
  78. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  79. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  80. Liu, F.L. and Liew, K.M. (1999), "Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities", Comput. Method Appl. M., 179(3), 407-423. https://doi.org/10.1016/S0045-7825(99)00049-3.
  81. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  82. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  83. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  84. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. 10.1063/1.2189213.
  85. Ma, W.L., Li, X.F. and Lee, K.Y. (2020), "Third-order shear deformation beam model for flexural waves and free vibration of pipes", J. Acoust. Soc. Am., 147(3), 1634-1647. https://doi.org/10.1121/10.0000855.
  86. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  87. Malik, M. and Das, D. (2020), "Free vibration analysis of rotating nano-beams for flap-wise, chord-wise and axial modes based on Eringen's nonlocal theory", Int. J. Mech. Sci., 179, 105655. https://doi.org/10.1016/j.ijmecsci.2020.105655.
  88. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  89. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  90. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  91. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  92. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  93. Mohammadi, M., Safarabadi, M., Rastgoo, A. and Farajpour, A. (2016), "Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment", Acta Mech., 227(8), 2207-2232. https://doi.org/10.1007/s00707-016-1623-4.
  94. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  95. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  96. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032.
  97. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Results Phys., 1(1), 17-25. https://doi.org/10.1016/j.rinp.2011.06.002.
  98. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel. Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  99. Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H. and Yan, A. (2020), "Architecture of cobweb-based redundant TSV for clustered faults", IEEE T. VLSI Syst., 28(7), 1736-1739. https://doi.org/10.1109/TVLSI.2020.2995094.
  100. Ni, T., Yang, Z., Chang, H., Zhang, X., Lu, L., Yan, A., Huang, Z. and Wen, X. (2021), "A novel TDMA-based fault tolerance technique for the TSVs in 3D-ICs using honeycomb topology", IEEE T. Emerging Topics Comput., 9(2), 724-734. https://doi.org/10.1109/TETC.2020.2969237.
  101. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.
  102. Pourasghar, A., Homauni, M. and Kamarian, S. (2016), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polym. Compos., 37(11), 3175-3180. https://doi.org/10.1002/pc.23515.
  103. Pouretemad, A., Torabi, K. and Afshari, H. (2019a), "DQEM analysis of free transverse vibration of rotating non-uniform nanobeams in the presence of cracks based on the nonlocal Timoshenko beam theory", SN Appl. Sci., 1(9), 1092. https://doi.org/10.1007/s42452-019-1130-z.
  104. Pouretemad, A., Torabi, K. and Afshari, H. (2019b), "Free vibration analysis of a rotating non-uniform nanocantilever carrying arbitrary concentrated masses based on the nonlocal Timoshenko beam using DQEM", INAE Lett., 4(1), 45-58. https://doi.org/10.1007/s41403-019-00065-x.
  105. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E, 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004.
  106. Prusa, J. and Cifra, M. (2019), "Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor", Sci. Rep., 9(1), 19721. https://doi.org/10.1038/s41598-019-56052-3.
  107. Rahman, M.M., Chowdhury, M.M. and Alam, M.K. (2017), "Rotating-electric-field-induced carbon-nanotube-based nano-motor in water: A molecular dynamics study", Small, 13(19), 1603978. https://doi.org/10.1002/smll.201603978.
  108. Rahmani, A., Faroughi, S. and Friswell, M.I. (2020), "The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory", Mech. Syst. Signal Pr., 144, 106854. https://doi.org/10.1016/j.ymssp.2020.106854.
  109. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A., Al-Zahrani, M.M.J.S. and Structures, C. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
  110. Safarpour, H. and Ghadiri, M. (2017), "Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid", Microfluid. Nanofluid., 21(2), 22. https://doi.org/10.1007/s10404-017-1858-y.
  111. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  112. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  113. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  114. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  115. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  116. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  117. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  118. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Model., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  119. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  120. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  121. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  122. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  123. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  124. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  125. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  126. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  127. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.
  128. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  129. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  130. Shi, M., Wang, F., Lan, P., Zhang, Y., Zhang, M., Yan, Y. and Liu, Y. (2021), "Effect of ultrasonic intensity on structure and properties of wheat starch-monoglyceride complex and its influence on quality of norther-style Chinese steamed bread", LWT, 138, 110677. https://doi.org/10.1016/j.lwt.2020.110677.
  131. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  132. Singh, D.K. and Pal, P. (2021), "Forced Vibration Analysis of Stiffened Lock Gate Structure", J. Sound Vib., 510, 116278. https://doi.org/10.1016/j.jsv.2021.116278.
  133. Talebitooti, R., Rezazadeh, S.O. and Amiri, A. (2019), "Comprehensive semi-analytical vibration analysis of rotating tapered AFG nanobeams based on nonlocal elasticity theory considering various boundary conditions via differential transformation method", Compos. Part B Eng., 160, 412-435. https://doi.org/10.1016/j.compositesb.2018.12.085.
  134. Tu, Y., Peng, F., Andre, A.A.M., Men, Y., Srinivas, M. and Wilson, D.A. (2017), "Biodegradable hybrid stomatocyte nanomotors for drug delivery", ACS Nano, 11(2), 1957-1963. https://doi.org/10.1021/acsnano.6b08079.
  135. Van Vinh, P. and Tounsi, A. (2021), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01475-8.
  136. Wang, S., Liu, K., Wang, F., Peng, F. and Tu, Y. (2019), "The application of micro- and nanomotors in classified drug delivery", Chem Asian J., 14(14), 2336-2347. https://doi.org/10.1002/asia.201900274.
  137. Wang, X. and Gu, H. (1997), "Static analysis of frame structures by the differential quadrature element method", Int. J. Numer. Method Eng., 40(4), 759-772. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<759::AID-NME87>3.0.CO,2-9.
  138. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  139. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  140. Xu, X.J., Deng, Z.C., Zhang, K. and Xu, W. (2016), "Observations of the softening phenomena in the nonlocal cantilever beams", Compos. Struct., 145, 43-57. https://doi.org/10.1016/j.compstruct.2016.02.073.
  141. Xu, X.J., Wang, X.C., Zheng, M.L. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038.
  142. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  143. Yahya, G.A., Abd-Alla, A.M. and El-Bendary, S. (2021), "Radial vibrations on an elastic medium subjected to rotation and magnetic field", Mech. Based Des. Struct., 1-14. https://doi.org/10.1080/15397734.2021.1875845.
  144. Yan, Y., Feng, L., Shi, M., Cui, C. and Liu, Y. (2020), "Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment", Food Chem., 306, 125589. https://doi.org/10.1016/j.foodchem.2019.125589.
  145. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  146. Yesilce, Y. (2011), "DTM and DQEM for free vibration of axially loaded and semi-rigid-connected Reddy-Bickford beam", Int. J. Numer. Method Biomed. Eng., 27(5), 666-693. https://doi.org/10.1002/cnm.1313.
  147. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  148. Zhang, B., Chen, Y.X., Wang, Z.G., Li, J.Q. and Ji, H.H. (2021a), "Influence of mach number of main flow on film cooling characteristics under supersonic condition", Symmetry, 13(1), 127. https://doi.org/10.3390/sym13010127.
  149. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021b), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  150. Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Eur. J. Mech. A Solid., 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009.
  151. Zhang, P., Wu, G., Zhao, C., Zhou, L., Wang, X. and Wei, S. (2020a), "Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment", Colloid Surface B., 194, 111204. https://doi.org/10.1016/j.colsurfb.2020.111204.
  152. Zhang, Q., Ding, Y., Gu, S., Zhu, S., Zhou, X. and Ding, Y. (2020b), "Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS", Food Res. Int., 137, 109339. https://doi.org/10.1016/j.foodres.2020.109339.
  153. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  154. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  155. Zhou, Y., Zhang, Y. and Yao, G. (2021), "Higher-order stability analysis of a rotating BDFG tapered beam with time-varying velocity", Compos. Struct., 267, 113858. https://doi.org/10.1016/j.compstruct.2021.113858.