Acknowledgement
This work was financially supported by National Natural Science Foundation of China (U20A6004).
References
- Baji, A. and Abtahi, M. (2013), "Fabrication of barium titanate-bismuth ferrite fibers using electrospinning", Adv. Nano Res., 1(4), 183-192. http://doi.org/10.12989/anr.2013.1.4.183.
- Chinnappan, A., Baskar, C., Baskar, S., Ratheesh, G. and Ramakrishna, S. (2017), "An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics", J. Mater. Chem. C, 5(48), 12657-12673. https://doi.org/10.1039/C7TC03058D.
- Choi, M.K., Yang, J., Kang, K., Kim, D.C., Choi, C., Park, C., Kim, S.J., Chae, S.I., Kim, T.H., Kim, J.H., Hyeon, T. and Kim, D.H. (2015), "Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing", Nat. Commun., 6(1), 1-8. https://doi.org/10.1038/ncomms8149.
- Dhanawansha, K.B., Senadeera, R., Gunathilake, S.S. and Dassanayake, B.S. (2020), "Silver nanowire-containing wearable thermogenic smart textiles with washing stability", Adv. Nano Res., 9(2), 123-131. https://doi.org/10.12989/anr.2020.9.2.123.
- Duan, H., Xie, E., Han, L. and Xu, Z. (2008), "Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation", Adv. Mater., 20(17), 3284-3288. https://doi.org/10.1002/adma.200702149.
- Duan, Y., Ding, Y., Xu, Z., Huang, Y. and Yin, Z. (2017), "Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers", Polymers, 9(9), 434. https://doi.org/10.3390/polym9090434.
- Fang, F., Chen, X., Du, Z., Zhu, Z., Chen, X., Wang, H. and Wu, P. (2015), "Controllable direct-writing of serpentine micro/nano structures via low voltage electrospinning", Polymers, 7(8), 1577-1586. https://doi.org/10.3390/polym7081471.
- Gao, W., Ota, H., Kiriya, D., Takei, K. and Javey, A. (2019), "Flexible electronics toward wearable sensing", Acc. Chem. Res., 52(3), 523-533. https://doi.org/10.1021/acs.accounts.8b00500.
- Huang, L., Wang, H., Zhan, D. and Fang, F. (2021), "Flexible capacitive pressure sensor based on laser-induced graphene and polydimethylsiloxane foam", IEEE Sens. J., 21(10), 12048-12056. https://doi.org/10.1109/JSEN.2021.3054985.
- Huang, S., Liu, Y., Zhao, Y., Ren, Z. and Guo, C.F. (2019), "Flexible electronics: Stretchable electrodes and their future", Adv. Funct. Mater., 29(6), 1805924. https://doi.org/10.1002/adfm.201805924.
- Huang, Y., Bai, X., Zhou, M., Liao, S., Yu, Z., Wang, Y. and Wu, H. (2016), "Large-scale spinning of silver nanofibers as flexible and reliable conductors", Nano Lett., 16(9), 5846-5851. https://doi.org/10.1021/acs.nanolett.6b02654.
- Huang, Y., Ding, Y., Bian, J., Su, Y., Zhou, J., Duan, Y. and Yin, Z. (2017), "Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers", Nano Energy, 40, 432-439. https://doi.org/10.1016/j.nanoen.2017.07.048.
- Huang, Y., Song, J., Yang, C., Long, Y. and Wu, H. (2019), "Scalable manufacturing and applications of nanofibers", Mater. Today, 28, 98-113. https://doi.org/10.1016/j.mattod.2019.04.018.
- Kong, T., Li, J., Liu, Z., Zhou, Z., Ng, P.H.Y., Wang, L. and Shum, H. C. (2016), "Rapid mixing of viscous liquids by electrical coiling", Sci. Rep., 6(1), 1-8. https://doi.org/10.1038/srep19606.
- Kou, L., Huang, T., Zheng, B., Han, Y., Zhao, X., Gopalsamy, K., Sun, H. and Gao, C. (2014), "Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics", Nat. Commun., 5(1), 1-10. https://doi.org/10.1038/ncomms4754.
- Luelf, T., Bremer, C. and Wessling, M. (2016), "Rope coiling spinning of curled and meandering hollow-fiber membranes", J. Membr. Sci., 506, 86-94. https://doi.org/10.1016/j.memsci.2016.01.037.
- Matsumoto, H., Minami, H., Yamaura, I. and Yoshida, Y. (2019), "Postoperative subdural hematoma with blood flow from an epidural hematoma through a tear at the suture point of an artificial dura substitute", Acta Neurochir., 161(4), 755-760. https://doi.org/10.1007/s00701-019-03830-7.
- Nag, A., Mukhopadhyay, S.C. and Kosel, J. (2017), "Wearable flexible sensors: A review", IEEE Sens. J., 17(13), 3949-3960. https://doi.org/10.1109/JSEN.2017.2705700.
- Nayak, L., Mohanty, S., Nayak, S.K. and Ramadoss, A. (2019), "A review on inkjet printing of nanoparticle inks for flexible electronics", J. Mater. Chem. C, 7(29), 8771-8795. https://doi.org/10.1039/C9TC01630A.
- Nezadi, M., Keshvari, H. and Yousefzadeh, M. (2021), "Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds", Adv. Nano Res., Int. J., 10(1), 59-69. http://doi.org/10.12989/anr.2021.10.1.059.
- Passieux, R., Guthrie, L., Rad, S.H., Levesque, M., Therriault, D. and Gosselin, F.P. (2015), "Instability-assisted direct writing of microstructured fibers featuring sacrificial bonds", Adv. Mater., 27(24), 3676-3680. https://doi.org/10.1002/adma.201500603.
- Persano, L., Camposeo, A. and Pisignano, D. (2015), "Active polymer nanofibers for photonics, electronics, energy generation and micromechanics", Prog. Polym. Sci., 43, 48-95. https://doi.org/10.1016/j.progpolymsci.2014.10.001.
- Ramakrishna, S., Fujihara, K., Teo, W.E., Yong, T., Ma, Z. and Ramaseshan, R. (2006), "Electrospun nanofibers: Solving global issues", Mater. Today, 9(3), 40-50. https://doi.org/10.1016/S1369-7021(06)71389-X.
- Romagnoli, P., Maeda, M., Ward, J.M., Truong, V.G. and Nic Chormaic, S. (2020), "Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: A review", Appl. Phys. B Lasers O., 126, 1-16. https://doi.org/10.1007/s00340-020-07456-x.
- Shariatpanahi, S.P., Bonn, D., Ejtehadi, M.R. and Zad, A.I. (2016), "Electrical bending instability in electrospinning visco-elastic solutions", J. Polym. Sci. Pol. Phys., 54(11), 1036-1042. https://doi.org/10.1002/polb.24029.
- Wang, X., Xu, L., Zheng, G., Jiang, J., Sun, D. and Li, W. (2021), "Formation of suspending beads-on-a-string structure in electro-hydrodynamic printing process", Mater. Des., 204, 109692. https://doi.org/10.1016/j.matdes.2021.109692.
- Wu, C.C., Reinhoudt, D.N., Otto, C., Subramaniam, V. and Velders, A.H. (2011), "Strategies for patterning biomolecules with dip-pen nanolithography", Small, 7(8), 989-1002. https://doi.org/10.1002/smll.201001749.
- Yang, W.M., Zhu, T.K., Jin, Y.A. and Fu, J.Z. (2017), "Facile fabrication of helical microfluidic channel based on rope coiling effect", Microsyst. Technol., 23(7), 2957-2964. https://doi.org/10.1007/s00542-016-3010-4.
- Zhang, C.L., Luo, Y.X., Cheng, R.R. and Wang, X.Y. (2017), "Electromechanical fields in piezoelectric semiconductor nano-fibers under an axial force", MRS Adv., 2(56), 3421-3426. https://doi.org/10.1557/adv.2017.301.
- Zhang, Y.Z., Wang, Y., Cheng, T., Yao, L. Q., Li, X., Lai, W.Y. and Huang, W. (2019), "Printed supercapacitors: Materials, printing and applications", Chem. Soc. Rev., 48(12), 3229-3264. https://doi.org/10.1039/C7CS00819H.
- Zheng, G., Jiang, J., Wang, X., Li, W., Yu, Z. and Lin, L. (2021), "High-aspect-ratio three-dimensional electrospinning via a tip guiding electrode", Mater. Des., 198, 109304. https://doi.org/10.1016/j.matdes.2020.109304.
- Zhu, Z., Chen, X., Huang, S., Du, Z., Liao, W., Fang, F., Peng, D. and Wang, H. (2015), "The process of wavy fiber deposition via auxiliary electrodes in near-field electrospinning", Appl. Phys. A, 120(4), 1435-1442. https://doi.org/10.1007/s00339-015-9330-x.