DOI QR코드

DOI QR Code

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping (Guilin University of Technology) ;
  • Shan, Huafeng (Keeson Technology Corporation Limited) ;
  • Chu, Weishen (Department of Mechanical Engineering, the University of Texas at Austin) ;
  • Chen, Yongji (Guangxi Mingxiang mechanical equipment testing Co., Ltd)
  • 투고 : 2021.08.05
  • 심사 : 2021.12.24
  • 발행 : 2022.01.25

초록

Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

키워드

참고문헌

  1. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
  2. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. http://doi.org/10.12989/anr.2018.6.3.219.
  4. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. http://doi.org/10.1080/15397734.2019.1633343.
  5. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  6. Aranda-Ruiz, J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033.
  7. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  8. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. http://doi.org/10.12989/anr.2018.6.3.257
  9. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A., 123(1), 104. http://doi.org/110.1007/s00339-016-0712-5.
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. http://doi.org/10.1080/15376494.2017.1285455.
  11. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. http://doi.org/10.12989/anr.2018.6.3.279.
  12. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. http://doi.org/10.1080/15397734.2020.1744005.
  13. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. http://doi.org/10.12989/anr.2021.10.2.175.
  14. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  15. Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169.
  16. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex, 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.
  17. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  18. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  19. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  20. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017a), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
  21. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017b), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141.
  22. Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  24. Fazaeli, A., Habibi, M. and Ekrami, A.A. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition", Metall. Eng., 19(2), 84-93. https://doi.org/10.22076/me.2017.41458.1064.
  25. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  26. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control., 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  27. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. http://doi.org/10.1007/s00542-015-2662-9.
  28. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. http://doi.org/10.1177/1077546315627723.
  29. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  30. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. http://doi.org/10.1080/15376494.2015.1091527.
  31. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. http://doi.org/10.1007/s00339-016-0196-3.
  32. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. http://doi.org/10.1007/s00339-016-0364-5.
  33. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. http://doi.org/10.1007/s40430-015-0472-8.
  34. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. http://doi.org/10.1007/s00542-017-3308-x.
  35. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. http://doi.org/10.1080/15376494.2016.1196770.
  36. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  37. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. http://doi.org/10.12989/scs.2017.25.2.197.
  38. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. http://doi.org/10.1007/s00542-016-2822-6.
  39. Ghazanfari, A., Assempour, A., Habibi, M. and Hashemi, R. (2016), "Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak-Kuczynski model", 16(1), 137-143.
  40. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. http://doi.org/10.1080/15397734.2019.1662310.
  41. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. http://doi.org/10.1007/s00366-021-01433-4.
  42. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  43. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2016), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258.
  44. Habibi, M., Hashemi, R., Fallah Tafti, M. and Assempour, A. (2018), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009.
  45. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  46. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex, 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  47. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  48. Hosseini, S.M.R., Habibi, M. and Assempour, A. (2018), "Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers", Modares Mech. Eng., 18(6), 174-181.
  49. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-021-01456-x.
  50. Hu, M., Wang, Y., Yan, Z., Zhao, G., Zhao, Y., Xia, L., Cheng, B., Di, Y. and Zhuang, X. (2021), "Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation", J. Mater. Chem. A, 9(24), 14093-14100. https://doi.org/10.1039/D1TA01505B.
  51. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  52. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  53. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  54. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  55. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  56. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  57. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  58. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  59. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  60. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  61. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-021-01316-8.
  62. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-021-01419-2.
  63. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021c), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  64. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  65. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  66. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solid Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
  67. Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solid. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.
  68. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  69. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  70. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  71. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A., 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  72. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", 12(1), 2050010. https://doi.org/10.1142/s1758825120500106.
  73. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020b), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin Wall Struct., 149 106669. https://doi.org/10.1016/j.tws.2020.106669.
  74. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020c), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4), 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  75. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex, 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  76. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dynam., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  77. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  78. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w.
  79. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.
  80. Sadri, M., Younesian, D. and Esmailzadeh, E. (2016), "Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass", Nonlinear Dynam., 84(3), 1667-1682. https://doi.org/10.1007/s11071-016-2596-5.
  81. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  82. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y
  83. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  84. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  85. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  86. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  87. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  88. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  89. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  90. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  91. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  92. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  93. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. M., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  94. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  95. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  96. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  97. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.
  98. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials. 13(7), 1707. https://doi.org/10.3390/ma13071707.
  99. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  100. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  101. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009.
  102. She, G.L., Yuan, F.G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002.
  103. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  104. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  105. Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion: Nonmetallic solids", Thermophys. Properties Matter, 13, 247-250.
  106. Wang, T., Wei, X., Wang, J., Huang, T., Peng, H., Song, X., Cabrera, L.V. and Perez-Jimenez, M.J. (2020a), "A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies", Eng. Appl. Artif. Intel., 92, 103680. https://doi.org/10.1016/j.engappai.2020.103680.
  107. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  108. Wang, K., Wang, H. and Li, S. (2022a), "Renewable quantile regression for streaming datasets", Knowledge Base Syst., 235, 107675. https://doi.org/10.1016/j.knosys.2021.107675.
  109. Wang, Y., Cheng, H., Hu, Q., Liu, L., Jia, L., Gao, S. and Wang, Y. (2022b), "Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries", J. Petrol. Sci. Eng., 208, 109313. https://doi.org/10.1016/j.petrol.2021.109313.
  110. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  111. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  112. Xu, X.J., Deng, Z.C., Zhang, K. and Xu, W. (2016), "Observations of the softening phenomena in the nonlocal cantilever beams", Compos Struct., 145, 43-57. https://doi.org/10.1016/j.compstruct.2016.02.073.
  113. Xu, X.J., Wang, X.C., Zheng, M.L. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038.
  114. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  115. Zhang, X., Tang, Y., Zhang, F. and Lee, C.S. (2016), "A novel aluminum-graphite dual-ion battery", Adv. Energ. Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
  116. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021a), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  117. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M.S.H. (2021b), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol. Struct. Dynam., 39(9), 3128-3143. https://doi.org/10.1080/07391102.2020.1760939.
  118. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021c), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex, 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  119. Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., Li, R., Bian, X., Guo, Y. and Qin, Y. (2021a), "Drought monitoring over yellow river basin from 2003-2019 using reconstructed MODIS land surface temperature in google earth engine", Remote Sens., 13(18), 3748. https://doi.org/10.3390/rs13183748.
  120. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021b), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  121. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.