DOI QR코드

DOI QR Code

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin (The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital) ;
  • Liu, Wenjian (City University of Macau) ;
  • Liu, Xiaoliang (The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital) ;
  • Li, Xin (Shandong University of Political Science and Law) ;
  • Wang, Han (Zhuhai Institute of Advanced Technology Chinese Academy of Sciences)
  • Received : 2021.11.20
  • Accepted : 2021.12.14
  • Published : 2022.02.25

Abstract

Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

Keywords

Acknowledgement

This work was supported in part by the Academic promotion program of Shandong First Medical University under Grant 2019LJ005.

References

  1. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  2. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  3. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  4. Babenko, A., Slesarev, A., Chigorin, A. and Lempitsky, V. (2014). Neural Codes for Image Retrieval in European Conference on Computer Vision, Springer, Cham, New York, U.S.A.
  5. Cheng, J.Z., Ni, D., Chou, Y.H., Qin, J., Tiu, C.M., Chang, Y.C., Huang, C.S., Shen, D. and Chen, C.M. (2016), "Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans", Sci. Rep., 6(1), 1-13. https://doi.org/10.1038/srep24454.
  6. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  7. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/ANR.2021.https://doi.org/10.2.175.
  8. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. (2009). "Imagenet: A large-scale hierarchical image database", Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Florida, U.S.A., June.
  10. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave Random Complex., 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.
  11. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  12. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  13. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  14. Ehyaei, J., Akbarshahi, A. and Shafiei, N.J.A.i.n.r. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141.
  15. Fasel, B. (2002). "Robust face analysis using convolutional neural networks", Proceeding od the 2002 International Conference on Pattern Recognition, Quebec City, Canada, August.
  16. Fazaeli, A., Habibi, M. and Ekrami, A.A. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite - pearlite steel with the same chemical composition %J Metallurgical Engineering", Metall. Eng., 19(2), 84-93. https://doi.org/10.22076/me.2017.41458.1064.
  17. Fusco, R., Sansone, M., Filice, S., Carone, G., Amato, D.M., Sansone, C. and Petrillo, A. (2016), "Pattern recognition approaches for breast cancer DCE-MRI classification: A systematic review", J. Med. Biol. Eng., 36(4), 449-459. https://doi.org/10.1007/s40846-016-0163-7.
  18. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control., 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  19. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  20. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  21. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  22. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  23. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  24. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  25. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  26. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  27. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  28. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  29. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  30. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  31. Ghazanfari, A., Assempour, A., Habibi, M. and Hashemi, R. (2016), "Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak-Kuczynski model", 16(1), 137-143.
  32. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.16623https://doi.org/10.
  33. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T. and Cuadros, J. (2016), "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", Jama, 316(22), 2402-2410. https://doi.org/10.1001/jama.2016.17216.
  34. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  35. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/https://doi.org/10.1016/j.ymssp.2021.107723.
  36. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2016), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258.
  37. Habibi, M., Hashemi, R., Fallah Tafti, M. and Assempour, A. (2018), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/https://doi.org/10.1016/j.jmapro.2017.11.009.
  38. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave Random Complex., 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  39. Hosseini, S.M.R., Habibi, M. and Assempour, A. (2018), "Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers", Modares Mech. Eng., 18(6), 174-181.
  40. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E. and Saltz, J.H. (2016), "Patch-based convolutional neural network for whole slide tissue image classification", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, U.S.A., June.
  41. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  42. Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z. and Pan, Q. (2021), "Object traversing by monocular UAV in outdoor environment", Asian J. Control, 23(6), 2766-2775. https://doi.org/https://doi.org/10.1002/asjc.2415.
  43. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  44. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01395-7.
  45. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  46. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  47. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  48. Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O. and Hajirasouliha, I. (2018), "Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images", EBioMedicine, 27, 317-328. https://doi.org/10.1016/j.ebiom.2017.12.026.
  49. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Adv. Neur. Inform. Proc. Syst., 25, 1097-1105.
  50. Lawrence, S., Giles, C.L., Tsoi, A.C. and Back, A.D. (1997), "Face recognition: A convolutional neural-network approach", IEEE T. Neur. Networ., 8(1), 98-113. https://doi.org/10.1109/72.554195.
  51. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541.
  52. LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Natur, 521(7553), 436-444. https://doi.org/10.1038/nature14539.
  53. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  54. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  55. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  56. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  57. Liu, F., Zhang, G. and Lu, J. (2021a), "Multisource heterogeneous unsupervised domain adaptation via fuzzy relation neural networks", IEEE T. Fuzzy Syst., 29(11), 3308-3322. https://doi.org/10.1109/TFUZZ.2020.3018191.
  58. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021b), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  59. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2021c), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  60. Liu, R., Wang, X., Lu, H., Wu, Z., Fan, Q., Li, S. and Jin, X. (2021d), "SCCGAN: Style and characters inpainting based on CGAN", Mobile Netw. Appl., 26(1), 3-12. https://doi.org/10.1007/s11036-020-01717-x.
  61. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021e), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  62. Lodwick, G.S., Keats, T.E. and Dorst, J.P. (1963), "The coding of roentgen images for computer analysis as applied to lung cancer", Radiology. 81(2), 185-200. https://doi.org/10.1148/81.2.185
  63. Lv, Z., Chen, D., Feng, H., Zhu, H. and Lv, H. (2021a), "Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics", IEEE T. Intell. Transp. Syst., 1-9. https://doi.org/10.1109/TITS.2021.3113787.
  64. Lv, Z., Qiao, L., Singh, A.K., Wang, Q. (2021b), "Fine-grained visual computing based on deep learning", 17(1s), 1-19. https://doi.org/https://doi.org/10.1145/3418215.
  65. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  66. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/https://doi.org/10.12989/scs.2017.25.4.415.
  67. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  68. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  69. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  70. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/s1758825120500106.
  71. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020b), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin Wall. Struct., 149, 106669. https://doi.org/https://doi.org/10.1016/j.tws.2020.106669.
  72. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020c), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4), 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  73. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave Random Complex., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  74. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  75. Ordonez, V., Deng, J., Choi, Y., Berg, A.C. and Berg, T.L. (2013). "From large scale image categorization to entry-level categories", Proceedings of IEEE International Conference on Computer Vision, Miami, U.S.A., June.
  76. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites micro-tubes", Sci. Rep., 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w.
  77. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech. Eng., 21(2), 1-13. https://doi.org/10.1007/s43452-021-00227-1.
  78. Robertson, S., Azizpour, H., Smith, K. and Hartman, J. (2018), "Digital image analysis in breast pathology-from image processing techniques to artificial intelligence", Transl. Res., 194, 19-35. https://doi.org/10.1016/j.trsl.2017.10.010.
  79. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A. and Bernstein, M. (2015), "Imagenet large scale visual recognition challenge", Int. J. Comput. Vision., 115(3), 211-252. https://doi.org/10.1007/s11263-015-0816-y.
  80. Sackinger, E., Boser, B.E., Bromley, J.M., LeCun, Y. and Jackel, L.D. (1992), "Application of the ANNA neural network chip to high-speed character recognition", IEEE T. Neur. Netw., 3(3), 498-505. https://doi.org/10.1109/72.129422.
  81. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.
  82. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  83. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  84. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  85. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  86. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  87. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  88. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  89. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/https://doi.org/10.1016/j.ast.2017.02.019.
  90. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  91. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.https://doi.org/10.061.
  92. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  93. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  94. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  95. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  96. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  97. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  98. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  99. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", 12(4), 586. https://doi.org/10.3390/sym12040586.
  100. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  101. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  102. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  103. Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.
  104. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015), "Going deeper with convolutions" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, U.S.A., June.
  105. Teramoto, A., Tsukamoto, T., Kiriyama, Y. and Fujita, H. (2017), "Automated classification of lung cancer types from cytological images using deep convolutional neural networks", BioMed Res. Int., 2017, 4067832. https://doi.org/10.1155/2017/4067832.
  106. Wang, T., Liu, W., Zhao, J., Guo, X. and Terzija, V. (2020a), "A rough set-based bio-inspired fault diagnosis method for electrical substations", Int. J. Electr. Power., 119, 105961. https://doi.org/10.1016/j.ijepes.2020.105961.
  107. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  108. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  109. Xiaoru, T. and Zhang, Y. (2018), "Research progress of raman spectroscopy in the diagnosis of early lung cancer", Chinese J. Lung Cancer, 21(7).
  110. Xu, Q., Zeng, Y., Tang, W., Peng, W., Xia, T., Li, Z., Teng, F., Li, W. and Guo, J. (2020), "Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network", IEEE J. Biomed. Health Inform., 24(9), 2481-2489. https://doi.org/10.1109/JBHI.2020.2986376.
  111. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  112. Yanase, J. and Triantaphyllou, E. (2019), "A systematic survey of computer-aided diagnosis in medicine: Past and present developments", Expert Syst. Appl., 138, 112821. https://doi.org/10.1016/j.eswa.2019.112821
  113. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  114. Zhang, M., Chen, Y. and Susilo, W. (2020), "PPO-CPQ: A privacy-preserving optimization of clinical pathway query for e-healthcare systems", IEEE Internet Things J., 7(10), 10660-10672. https://doi.org/10.1109/JIOT.2020.3007518.
  115. Zhang, B., Chen, Y.X., Wang, Z.G., Li, J.Q. and Ji, H.H. (2021a), "Influence of mach number of main flow on film cooling characteristics under supersonic condition", 13(1), 127. https://doi.org/https://doi.org/10.3390/sym13010127.
  116. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021b), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  117. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M.S.H. (2021c), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol Struct. Dyn., 39(9), 3128-3143. https://doi.org/10.1080/07391102.2020.1760939.
  118. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021d), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave Random Complex., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  119. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  120. Zhou, W., Yu, L., Zhou, Y., Qiu, W., Wu, M.W. and Luo, T. (2018), "Local and global feature learning for blind quality evaluation of screen content and natural scene images", IEEE T. Image Proc., 27(5), 2086-2095. https://doi.org/10.1109/TIP.2018.2794207.
  121. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/ANR.2020.9.4.295.
  122. Zhou, Y., Xu, G., Tang, K., Tian, L. and Sun, Y. (2022), "Video coding optimization in AVS2", Inform. Proc. Manage., 59(2), 102808. https://doi.org/10.1016/j.ipm.2021.102808.