# THE SPECTRAL DECOMPOSITION FOR FLOWS ON TVS-CONE METRIC SPACES 

Kyung Bok Lee


#### Abstract

We study some properties of nonwandering set $\Omega(\phi)$ and chain recurrent set $\operatorname{CR}(\phi)$ for an expansive flow which has the POTP on a compact TVS-cone metric spaces. Moreover we shall prove a spectral decomposition theorem for an expansive flow which has the POTP on TVS-cone metric spaces.


## 1. Introduction and preliminaries

In 1967, Smale had proved the spectral decomposition theorem, i.e, the nonwandering set of an Axiom A dynamical system on a compact manifold is the union of finitely many basic sets[4]. Also, the spectral decomposition theorem for an expansive flow with the pseudo orbit tracing property on a compact uniform space had proved by J. S. Park and S. H. Ku in 2020[2].

In this paper we investigate some properties of nonwandering set and chain recurrent set for flows on a compact TVS-cone metric space.

And we extend the spectral decomposition theorem on a compact uniform space to expansive flow with the pseudo orbit tracing property on a compact TVS-cone metric space.

We now introduce notions and definitions necessary for our works,
Let $E$ be a topological vector space. A subset $P$ of $E$ is called a topological vector space cone (abbr. TVS-cone) if the following are satisfied
(A) $P$ is closed and $\operatorname{Int}(P) \neq \emptyset$

[^0](B) If $u, v \in P$ and $a, b \geq 0$, then $a u+b v \in P$
(C) If $u,-u \in P$, then $u=0$.

Let $P$ be a TVS-cone of a topological vector space $E$. Some partial ordering $\leq,<$ and $\ll$ on $E$ with respect to $P$ are defined as followings respectively
(i) $u \leq v$ if $v-u \in P$
(ii) $u<v$ if $u \leq v$ but $u \neq v$
(iii) $u \ll v$ if $v-u \in \operatorname{Int}(P)$, where $\operatorname{Int}(P)$ denote the interior of $P$.

Lemma 1.1. Let $P$ be a TVS-cone of a topological vector space $E$. Then the following hold.
(1) If $u \gg 0$, then $r u \gg 0$ for all $r>0$
(2) If $u_{1} \gg v_{1}, u_{2} \gg v_{2}$, then $u_{1}+u_{2} \gg v_{1}+v_{2}$
(3) If $u \gg 0$ and $v \gg 0$, then there exists $w \gg 0$ such that $w \ll u$ and $w \ll v[1]$.

Let $E$ be a topological vector space with cone $P$. A map $d: X \times X \rightarrow$ $E$ is called a TVS-cone metric on $X$ and $(X, d)$ called a TVS-cone metric space if the following conditions are satisfied.
(i) $d(x, y) \geq 0$ for all $(x, y) \in X \times X$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $(x, y) \in X \times X$,
(iii) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z$ in $X$.

Let ( $X, d$ ) be a TVS-cone metric space, then the collection of all $u$ balls $B_{d}(x, u), \mathfrak{B}=\left\{B_{d}(x, u) \mid x \in X, u \gg 0\right\}$, is a basis for some topology $\Im$ on $X$.

In this paper, we always suppose that a cone $P$ is a TVS-cone on a topological vector space $E$ and a TVS-cone metric space $(X, d)$ is a topological space with the above topology $\Im$.

Let ( $X, d$ ) be a TVS-cone metric space over topological vector space $E$.

A flow on $X$ is the triplet ( $X, \mathbb{R}, \phi$, where $\phi$ is a map from the product space $X \times \mathbb{R}$ into the space $X$ satisfying the following axioms :
(1) $\phi(x, 0)=x$ for every $x \in X$,
(2) $\phi(\phi(x, s), t)=\phi(x, s+t)$ for every $x \in X$ and $s, t$ in $\mathbb{R}$,
(3) $\phi$ is continous.

We denoted by $C_{0}(\mathbb{R})$ the set of all continuous functions $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h(0)=0$.

Let $\phi$ be a flow on a TVS-cone metric space $(X, d)$ :
$\phi$ is said to be expansive if for every $\epsilon>0$ there exists a vector $u \gg 0$ such that if $x, y \in X$ satisfy $d\left(\phi_{t}(x), \phi_{h(t)}(y)\right) \ll u$ for all $t \in \mathbb{R}$ and some $h \in C_{0}(\mathbb{R})$ then $y=\phi_{r}(x)$ where $|r|<\epsilon$.

Let $\phi$ be a flow on a TVS-cone metric space $(X, d)$. Given a vector $u \gg 0$ and a real number $T>0$, an $(u, T)$-pseudo orbit is a collection of sequences $\left(\left\{x_{i}\right\},\left\{t_{i}\right\}\right)$ so that $t_{i} \geq T$ and $d\left(\phi_{t_{i}}\left(x_{i}\right), x_{i+1}\right) \ll u$ for all $i \in \mathbb{Z}$. For the sequence $\left\{t_{i}\right\}$ we write $s_{n}=\sum_{i=0}^{n-1} t_{i}, s_{-n}=\sum_{i=-n}^{-1} t_{i}$, where $s_{0}=\sum_{i=0}^{-1} t_{i}=0$. we always assume $\sum_{i=j}^{k} t_{i}=0$ if $k<j$.

An $(u, T)$-pseudo orbit $\left(\left\{x_{i}\right\},\left\{t_{i}\right\}\right)$ is $v$-traced by an orbit $\left(\phi_{t}(x)\right)_{t \in \mathbb{R}}$ if

$$
d\left(\phi_{t}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right) \ll v \text { if } s_{n} \leq t<s_{n+1} \text { for } n \geq 0
$$

and

$$
d\left(\phi_{t}(z), \phi_{t+s_{n}}\left(x_{n}\right)\right) \ll v \text { if }-s_{n} \leq t<-s_{n+1} \text { for } n<0 .
$$

We say that a flow $\phi$ has the pseudo orbit tracing property (POTP) if for any vector $u \gg 0$ there exists a vector $v \gg 0$ such that every $(v, T)$-pseudo orbit is $u$-traced by an orbit of $\phi$ for all $T>0$.

Lemma 1.2. Let $\phi$ be a flow on a TVS-cone metric space ( $X, d$ ) without fixed points. Then there exists a number $T_{0}>0$ such that for every $T \in\left[0, T_{0}\right]$ there is a vector $u \gg 0$ such that $d\left(\phi_{T}(x), x\right) \geq u$ for all $x \in X[1]$.

Lemma 1.3. [1] Let $\phi$ be a flow on a TVS-cone metric space $(X, d)$. Let $\mathcal{T}$ be a compact subset of $\mathbb{R}$ and $x \in X$. Then for every vector $u \gg 0$ there exists a vector $v \gg 0$ such that if $d(x, y) \ll v$, then $d\left(\phi_{t}(x), \phi_{t}(y)\right) \ll u$ for all $t \in \mathcal{T}$.

Lemma 1.4. Let $\phi$ be a flow on a TVS-cone metric space ( $X, d$ ) without fixed points and let $T_{0}$ be the number determined by Lemma 1.3. For every $T \in\left(0, T_{0}\right)$ there exists a vector $u \gg 0$ with $d\left(\phi_{T}(x), y\right) \geq u$ provided that $d(x, y) \ll u$.

Proof. Take a vector $v \gg 0$ determined in Lemma 1.2 and choose a vector $w_{1}$, with $0 \ll w_{1} \ll \frac{1}{2} v$. Since $\phi_{T}$ is uniformly continuous, there exists a vector $w_{2} \gg 0$ such that if $d(x, y) \ll w_{2}$, then $d\left(\phi_{T}(x), \phi_{T}(y)\right) \ll$ $w_{1}$. Moreover, if $d(x, y) \ll w_{2}$, then $d\left(\phi_{T}(x), y\right) \gg w_{1}$. Assume that $d\left(\phi_{T}(x), y\right) \ll w_{1}$.

We obtain $d\left(\phi_{T}(y), y\right) \leq d\left(\phi_{T}(y), \phi_{T}(x)\right)+d\left(\phi_{T}(x), y\right) \ll 2 w_{1} \ll v$, contradicting that the choice of $v$. Take a vector $u \gg 0$ with $u \ll w_{1}$, and $u \ll w_{2}$. If $d(x, y) \ll u \ll w_{2}$, then $d\left(\phi_{T}(x), y\right) \gg w_{1}$, so that $d\left(\phi_{T}(x), y\right) \gg u$.

## 2. Nonwandering set and chain recurrent set

Let $\phi$ be a flow on a TVS-cone metric space $(X, d)$. Given a vector $u \gg 0, T>0$, and $x, y \in X$, an $(u, T)$-chain from $x$ to $y$ is a collection $\left\{x=x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}=y ; t_{0}, t_{1}, \cdots, t_{n-1}\right\}$ so that $t_{i} \geq T$ and $d\left(\phi_{t_{i}}\left(x_{i}\right), x_{i+1}\right) \ll u$ for all $i=0,1, \cdots, n-1$.

A point $x$ is equivalent to $y$, written $x \sim y$, if for every vector $u \gg 0$ and $T>0$, there is an $(u, T)$-chain from $x$ to $y$ and one from $y$ to $x$. The chain recurrent set of $\phi$ is $\operatorname{CR}(\phi)=\{x \in X \mid x \sim x\}$.

The relation $\sim$ is an equivalence relation on $\operatorname{CR}(\phi)$ and the equivalence classes are called chain component for $\phi$.

A point $x \in X$ is called nonwandering of a flow $\phi$ on a TVS-cone metric space $(X, d)$ if for any neighborhood $U$ of $x, \phi_{T}(U) \cap U \neq \emptyset$ for some $T>0$. The set of nonwandering points is denoted by $\Omega(\phi)$.

Lemma 2.1. Let $\phi$ be a flow on a compact TVS-cone metric space $(X, d)$. If $x \in \operatorname{CR}(\phi)$, then $x \sim \phi_{r}(x)$ for all $r \in \mathbb{R}$.

Proof. Let $r>0, T>0$ and a vector $u \gg 0$. If $T \leq r$, then $\left\{x, \phi_{r}(x) ; r\right\}$ is an $(u, T)$-chain from $x$ to $\phi_{r}(x)$. Now consider the case $T>r$. By the continuity of $\phi_{r}$, there exists a vector $v \gg 0$ such that if $d(x, y) \ll v$, then $d\left(\phi_{r}(x), \phi_{r}(y)\right) \ll u$. By $x \sim x$, there is a $(v, T)$-chain $\left\{x=x_{0}, \cdots, x_{k}=x ; t_{0}, t_{1}, \cdots, t_{k-1}\right\}$ from $x$ to itself. Then a collection

$$
\left\{x=x_{0}, \cdots, x_{k-1}, \phi_{r}(x) ; t_{0}, t_{1}, \cdots, t_{k-1}+t\right\}
$$

is an $(u, T)$-chain from $x$ to $\phi_{r}(x)$.
Also, since there exists an $(u, T+r)$-chain

$$
\left\{x=x_{0}, \cdots, x_{k}=x ; t_{0}, t_{1}, \cdots, t_{k-1}\right\}
$$

from $x$ to itself, we get an $(u, T)$-chain from $\phi_{r}(x)$ to $x$

$$
\left\{\phi_{r}(x), x_{1}, \cdots, x_{k}=x ; t_{0}-r, t_{1}, \cdots, t_{k-1}\right\}
$$

Therefore $x \sim \phi_{r}(x)$. For $r<0$, it follows that $x \sim \phi_{r}(x)$ by similar argument.

A set $M \subset X$ is said to be invariant if $\phi_{t}(M) \subset M$ for all $t \in \mathbb{R}$.
Lemma 2.2. Let $\phi$ be a flow on a compact TVS-cone metric space $(X, d)$ and $C$ be a chain component. Then $C$ is invariant and closed.

Proof. By Lemma 2.1, $C$ is invariant. To show the closedness of $C$, we shall prove that $C=\bar{C}$. Let $z \in \bar{C}$. To prove that $z \in C$, let $y \in C$ and let $T>0$ and a vector $u \gg 0$. By the continuity of $\phi_{T}$, there exists a vector $v$ with $0 \ll v \ll \frac{1}{2} u$ such that if $d(x, y) \ll v$,
then $d\left(\phi_{T}(x), \phi_{T}(y)\right) \ll u$. From $z \in \bar{C}$, there is a $x \in C$ such that $d(x, z) \ll v$. Because $x, y \in C$, there exists a ( $v, 2 T$ )-chain

$$
\left\{x=x_{0}, x_{1}, \cdots, x_{k}=y ; t_{0}, t_{1}, \cdots, t_{k-1}\right\}
$$

from $x$ to $y$. Since $d(x, z) \ll v$, we have $d\left(\phi_{T}(x), \phi_{T}(z)\right) \ll u$. so a collection

$$
\left\{z, \phi_{T}(x), x_{1}, \cdots, x_{k}=y ; T, t_{0}-T, t_{1}, \cdots, t_{k-1}\right\}
$$

is an $(u, T)$-chain from $x$ to $y$.
Now we shall obtain an $(u, T)$-chain from $y$ to $z$. Notice that there exists a $(v, T)$-chain

$$
\left\{y=x_{0}, x_{1}, \cdots, x_{k}=y ; t_{0}, \cdots, t_{k-1}\right\}
$$

from $y$ to $x$. Then

$$
d\left(\phi_{t_{k-1}}\left(x_{k-1}\right), z\right) \leq d\left(\phi_{t_{k-1}}\left(x_{k-1}\right), x\right)+d(x, z) \ll 2 v \ll u
$$

Thus a collection

$$
\left\{y=x_{0}, \cdots, x_{k-1}, z ; t_{0}, \cdots, t_{k-1}\right\}
$$

is an $(u, T)$-chain from $y$ to $z$.
Concatenating the $(u, T)$-chain from $z$ to $y$ with the $(u, T)$-chain from $y$ to $z$, we obtain an $(u, T)$-chain from $z$ to itself. Therefore $z \in \operatorname{CR}(\phi)$ and $z \sim y$. Consequently $z \in C$, i.e., $C$ is closed.

Proposition 2.3. Let $\phi$ be a flow on a compact TVS-cone metric space $(X, d)$. If $\phi$ has the POTP, then $\Omega(\phi)=\operatorname{CR}(\phi)$.

Proof. Let $x \in \operatorname{CR}(\phi)$. Given any neighborhood $U$ of $x$, there exists a vector $u \gg 0$ such that $B(x, u) \subset U$. Since $\phi$ has the POTP, there is a vector $v \gg 0$ such that every $(v, 1)$-pseudo orbit is $u$-traced by some orbit. By $x \in \mathrm{CR}(\phi)$, there exists a $(v, 1)$-chain

$$
\left\{x=x_{0}, x_{1}, \cdots, x_{k-1}, x_{k}=x ; t_{0}, t_{1}, \cdots, t_{k-1}\right\}
$$

from $x$ to itself.
For $n=m k+j$ with $m \in \mathbb{Z}$ and $0 \leq j<k$, let $x_{n}=x_{j}$ and $t_{n}=t_{i}$. Then $\left(\left\{x_{n}\right\},\left\{t_{n}\right\}\right)$ is a $(v, 1)$-pseudo orbit.

Thus there exists $z \in X$ such that

$$
d\left(\phi_{t}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right) \ll u \text { for } s_{n} \leq t<s_{n+1}, n \geq 0
$$

and

$$
d\left(\phi_{t}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right) \ll u \text { for }-s_{n} \leq t<-s_{n+1}, n \leq 0
$$

From the fact that $d(z, x)=d\left(\phi_{0}(z), \phi_{0-s_{0}}(x)\right) \ll u$, we have $z \in$ $B(x, u) \subset U$. There exists an $n=m k$ such that $s_{n}>1$.

By $d\left(\phi_{s_{n}}(z), x\right)=d\left(\phi_{s_{n}}(z), \phi_{s_{n}-s_{n}}\left(x_{n}\right)\right) \ll u$, we have $\phi_{s_{n}}(z) \in$ $B(x, u) \subset U$, i.e., $\phi_{s_{n}}(U) \cap U \neq \emptyset$. Consequently, $x \in \Omega(\phi)$. Since $\Omega(\phi) \subset \mathrm{CR}(\phi)$, we conclude that $\Omega(\phi)=\operatorname{CR}(\phi)$.

Proposition 2.4. Let $\phi$ be an expansive flow on a compact TVScone metric space $(X, d)$. If $\phi$ has the POTP, then the set $\operatorname{Per}(\phi)$ of periodic points is dense in $\mathrm{CR}(\phi)$.

Proof. Since $\operatorname{Per}(\phi) \subset \mathrm{CR}(\phi)$ and $\mathrm{CR}(\phi)$ is closed, we get $\overline{\operatorname{Per}(\phi)} \subset$ CR $(\phi)$.

To prove that $\operatorname{CR}(\phi) \subset \overline{\operatorname{Per}(\phi)}$, choose $x \in \operatorname{CR}(\phi)$. Let $U$ be a neighborhood of $x$ and let $0<\epsilon<1$. we claim that $U \cap \operatorname{Per}(f) \neq \emptyset$.

By the expansiveness, there exists a vector $u \gg 0$ with $B(x, u) \subset U$ such that if

$$
d\left(\phi_{f(t)}(x), \phi_{t}(y)\right) \ll u \text { for all } t \in \mathbb{R} \text { and some } f \in C_{0}(\mathbb{R})
$$

then $y=\phi_{s}(x)$ for some $|s|<\epsilon$.
Since $\phi$ has the POTP, there is a vector $v \gg 0$ such that every $(v, 1)$ pseudo orbit is $\frac{1}{2} u$-traced by some orbit of $\phi$.

Since $x \in \mathrm{CR}(\phi)$, there exists a $(v, 1)$-chain $\left\{x=x_{0}, x_{1}, \cdots, x_{k-1}, x_{k}=\right.$ $\left.x ; t_{0}, t_{1}, \cdots, t_{k-1}\right\}$ from $x$ to itself.

We can extend this $(v, 1)$-chain to a $(v, 1)$-pseudo orbit $\left(\left\{x_{n}\right\},\left\{t_{n}\right\}\right)$ in a same way as the proof of Proposition 2.3. Then there exists $z \in X$ such that

$$
d\left(\phi_{t}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right) \ll \frac{1}{2} u \text { for } s_{n} \leq t<s_{n+1}, n \geq 0
$$

and

$$
d\left(\phi_{t}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right) \ll \frac{1}{2} u \text { for }-s_{n} \leq t<-s_{n+1}, n \leq 0
$$

Let $m \geq 0, s_{m k+j} \leq t<s_{m k+j+1}$. Since

$$
s_{(m+1) k+j}=s_{m k+j}+s_{k} \leq t+s_{k}<s_{m k+j+1}+s_{k}=s_{(m+1) k+j+1}
$$

we have
$d\left(\phi_{t+s_{k}}(z), \phi_{t+s_{k}-s_{(m+1) k+1}}\left(x_{(m+1) k+j}\right)\right)=d\left(\phi_{t+s_{k}}(z), \phi_{t-s_{m k+j}}\left(x_{m k+j}\right)\right)<\frac{1}{2} u$.
Thus $d\left(\phi_{t+s_{k}}(z), \phi_{t}(z)\right) \leq d\left(\phi_{t+s_{k}}(z), \phi_{t-s_{n}}\left(x_{n}\right)\right)+d\left(\phi_{t-s_{n}}\left(x_{n}\right), \phi_{t}(z)\right) \ll$ $u$.

Let $m<0,-s_{m k+j} \leq y<-s_{m k+j+1}$. Since
$-s_{(m-1) k+j}=-s_{m k+j}+s_{k} \leq t+s_{k} \leftarrow s_{m k+j+1}+s_{k}=-s_{(m-1) k+j+1}$,
we have
$d\left(\phi_{t+s_{k}}(z), \phi_{t+s_{k}+s_{(m-1) k+j}}\left(x_{(m-1) k+j}\right)\right)=d\left(\phi_{t+s_{k}}(z), \phi_{t+s_{m k+j}}\left(x_{m k+j}\right)\right)<\frac{1}{2} u$.
Thus $d\left(\phi_{t+s_{k}}(z), \phi_{t}(z)\right) \leq d\left(\phi_{t+s_{k}}(z), \phi_{t+s_{n}}\left(x_{n}\right)\right)+d\left(\phi_{t+s_{n}}\left(x_{n}\right), \phi_{t}(z)\right) \ll$ $u$. From $d\left(\phi_{t+s_{k}}(z), \phi_{t}(z)\right)=d\left(\phi_{t}\left(\phi_{s_{k}}(z)\right), \phi_{t}(z)\right) \ll u$ for all $t \in \mathbb{R}$, we have

$$
z=\phi_{s}\left(\phi_{s_{k}}(x)\right)=\phi_{s_{k}+s}(z) \text { for some }|s|<\epsilon .
$$

By $s_{k} \geq s_{1}=t_{0} \geq 1>\epsilon>|s|$, we get $s_{k}-s \geq s_{k}-|s|>0$. Thus $z$ is a periodic point. Moreover $d(z, x)=d\left(\phi_{0}(z), \phi_{0-s_{0}}\left(x_{0}\right)\right) \ll \frac{1}{2} u \ll u$ and therefore $z \in B(x, u) \subset U$.

Consequently the set $\operatorname{Per}(\phi)$ of periodic points is dense in $\operatorname{CR}(\phi)$.
Remark 2.5. Assume that a flow is expansive and has the POTP. In the proof of Proposition 2.4, we demonstrate that if a pseudo orbit is periodic, then there exists a periodic point which traces the periodic pseudo orbit.

## 3. Spectral decomposition theorem

Smale's spectral decomposition theorem say that for Axiom A flows the nonwandering set partitions into nonempty closed invariant sets each of which is topologically transitive [4].

We now prove spectral decomposition theorem for an expansive flow on a compact TVS-cone metric space. First we introduce the following definitions and lemmas.

Let $\phi$ be a flow on a TVS-cone metric space $(X, d)$. For given vector $u \gg 0$ and $x \in X$, let $W_{u}^{s}(x)$ and $W_{u}^{u}(x)$ be the local stable and local unstable sets defined by

$$
\begin{aligned}
W_{u}^{s}(x) & =\left\{y \in X \mid d\left(\phi_{t}(x), \phi_{t}(y)\right) \ll u \text { for all } t \geq 0\right\} \\
W_{u}^{u}(x) & =\left\{y \in X \mid d\left(\phi_{t}(x), \phi_{t}(y)\right) \ll u \text { for all } t \leq 0\right\} .
\end{aligned}
$$

Also, define the stable and unstable sets $W^{s}(x), W^{u}(x)$ as
$W^{s}(x)=\left\{y \in X \mid \forall u \gg 0, \exists T>0\right.$ s.t. $\mathcal{O}(x) \cap B\left(\phi_{t}(y), u\right) \neq \emptyset$ for all $\left.t \geq T\right\}$
$W^{u}(x)=\left\{y \in X \mid \forall u \gg 0, \exists T<0\right.$ s.t. $\mathcal{O}(x) \cap B\left(\phi_{t}(y), u\right) \neq \emptyset$ for all $\left.t \leq T\right\}$ , where $\mathcal{O}(x)$ denote the orbit of $x$.

Lemma 3.1. Let $\phi$ be an expansive flow on a compact TVS-cone metric space $(X, d)$. Then there exists a vector $u \gg 0$ such that if $p \in \operatorname{Per}(\phi)$, then $W_{u}^{s}(p) \subset W^{s}(p)$ and $W_{u}^{u}(p) \subset W^{u}(p)$.

Proof. Let $u_{1} \gg 0$ be an expansive vector with respect to 1 . Choose any vector $u, 0 \ll u \ll u_{1}$. We claim that $W_{u}^{s}(p) \subset W^{s}(p)$.

Assume that $W_{u}^{s}(p) \not \subset W^{s}(p)$ for some periodic point $p$. We take $y \in W_{u}^{s}(p)-W^{s}(p)$. By $y \notin W^{x}(p)$, there is a vector $w \gg 0$ such that for every $t>0$,

$$
\mathcal{O}(p) \cap B\left(\phi_{T}(y), w\right)=\emptyset \text { for some } T \geq t
$$

So for each $n$ there exists a $t_{n}>\max \left\{n, t_{n-1}\right\}$ such that $\mathcal{O}(p) \cap B\left(\phi_{t_{n}}(y), w\right)=$ $\emptyset$. By the compactness of $X$, the sequence $\left\{\phi_{t_{n}}(p)\right\}$ has a convergent subsequence.

Let $\phi_{t_{n}}(y) \rightarrow y_{0}$. We claim that $\mathcal{O}(p) \cap B\left(y_{0}, \frac{1}{2} w\right)=\emptyset$. Otherwise, there exists a $q \in \mathcal{O}(p) \cap B\left(y_{0}, \frac{1}{2} w\right)$. By $\phi_{t_{n}}(y) \rightarrow y_{0}$, there is a $k$ such that $\phi_{t_{k}}(y) \in B\left(y_{0}, \frac{1}{2} w\right)$. Since $d\left(q, \phi_{t_{k}}(y)\right) \leq d\left(q, y_{0}\right)+d\left(y_{0}, \phi_{t_{k}}(q)\right) \ll$ $\frac{1}{2} w+\frac{1}{2} w=w$, it follows that $q \in \mathcal{O}(p) \cap B\left(\phi_{y_{k}}(y), w\right)$. This is contradiction. Thus $y_{0} \notin \mathcal{O}(p)$.

Let $\phi_{t_{n}}(p) \rightarrow p_{0}$. For any $t \in \mathbb{R}$, since $t_{n} \rightarrow \infty$, there is a positive integer $N$ such that $t_{N}+t>0$. By $t_{n}+t \geq t_{N}+t$ for all $n \geq N$, $d\left(\phi_{t} \phi_{t_{n}}(p), \phi_{t} \phi_{t_{n}}(y)\right) \ll u$. Put $n \rightarrow \infty$. Then $d\left(\phi_{t}\left(p_{0}\right), \phi_{t}\left(y_{0}\right)\right) \ll u \ll$ $u_{1}$. Thus $y_{0}=\phi_{s}\left(p_{0}\right)$ for some $s,|s|<1$ and hence $y_{0} \in \mathcal{O}(p)$.

This contradiction imply that $W_{u}^{s}(p) \subset W^{s}(p)$ for all $p \in \operatorname{Per}(\phi)$. The proof for $W_{u}^{u}(p) \subset W^{u}(p)$ is similar.

Lemma 3.2. Let $p, q \in \operatorname{Per}(\phi)$. If $W^{u}(p) \cap W^{s}(q) \neq \emptyset$ and $W^{s}(p) \cap$ $W^{u}(q) \neq \emptyset$, Then $p \sim q$.

Proof. Let $x \in W^{u}(p) \cap W^{s}(q)$. Let any vector $u \gg 0$ and $T>0$. Then there is a $s>0$ such that $\mathcal{O}(p) \cap B\left(\phi_{t}(x), u\right) \neq \emptyset$ for all $t \leq-s$ and $\mathcal{O}(q) \cap B\left(\phi_{t}(x), u\right) \neq \emptyset$ for all $t \geq s$. choose $t \geq s$ with $2 t \geq T$.

Let $p_{0} \in \mathcal{O}(p) \cap B\left(\phi_{-t}(x), u\right)$ and $q_{0} \in \mathcal{O}(q) \cap B\left(\phi_{t}(x), u\right)$. Take $r_{1}, r_{2} \geq T$ such that $p_{0}=\phi_{r_{1}}(p)$ and $q_{0}=\phi_{r_{2}}(q)$, respectively.

Then $\left\{p, \phi_{-t}(x), q_{0}, q ; r_{1}, 2 t, r_{2}\right\}$ is an $(u, T)$-chain form $p$ to $q$.
Similarly, we can construct an $(u, T)$-chain from $q$ to $p$. Consequently, $p \sim q$.

Lemma 3.3. Let $\phi$ be an expansive flow on a compact TVS-cone metric space $(X, d)$. If $\phi$ has the POTP and $C$ is a chain component, then $C$ is open in $\Omega(\phi)$.

Proof. Let $u_{1} \gg 0$ be the vector determined as Lemma 3.1. Take a vector $v_{1} \gg 0$ corresponding to $u_{1}$ by the POTP. By Proposition 2.3 and 2.4, $\Omega(\phi)=\overline{\operatorname{Per}(\phi)}$. Since $U \equiv B\left(C, \frac{1}{2} v_{1}\right) \cap \Omega(\phi)$ is a nonempty open set in $\Omega(\phi), U \cap \operatorname{Per}(\phi)$ is nonempty. Let $p \in U \cap \operatorname{Per}(\phi)$. Then $d(y, p) \ll \frac{1}{2} v_{1}$ for some $y \in C$.

We claim that $p \sim y$. For any vector $u \gg 0$ and number $T>0$, there exists a vector $v \gg 0$ with $v \ll \frac{1}{2} v_{1}, v \ll u$ such that if $d(y, z) \ll$ $v$, then $d\left(\phi_{T}(y), \phi_{T}(z)\right) \ll u$. We can take $q \in B(y, v) \cap \operatorname{Per}(\phi)$ by $B(y, v) \cap \operatorname{Per}(\phi) \neq \emptyset . d(y, q) \ll v$ implies $d\left(\phi_{T}(y), \phi_{T}(q)\right) \ll u$. By the periodicity of $q, \phi_{t}(q)=q$ for some $t, t \geq 2 T$. Then $\left\{y, \phi_{T}(q), q ; T, t-T\right\}$ is an $(u, T)$-chain from $y$ to $q$ and $\{q, y ; t\}$ is an $(u, T)$-chain from $q$ to $y$.

Take $r_{1}, r_{2} \geq T$ with $\phi_{r_{1}}(p)=p$ and $\phi_{r_{2}}(q)=q . \quad$ we define the following

$$
\begin{aligned}
& u_{n}=\phi_{-n r_{1}}(p), t_{n}=r_{1} \text { for } n<0 \\
& u_{n}=\phi_{n r_{2}}(q), t_{n}=r_{2} \text { for } n \geq 0
\end{aligned}
$$

Then $d(p, q) \leq d(p, y)+d(y, q) \ll \frac{1}{2} v_{1}+v \ll \frac{1}{2} v_{1}+\frac{1}{2} v_{1}=v_{1}$. Therefore $\left(\left\{v_{n}\right\},\left\{t_{n}\right\}\right)$ is a $\left(v_{1}, T\right)$-pseudo orbit. Thus there exists a $z \in X$ that $u_{1}$-traces the $\left(v_{1}, T\right)$-pseudo orbit $\left(\left\{u_{n}\right\},\left\{t_{n}\right\}\right)$. For $t \geq 0$, let $n r_{2} \leq t<(n+1) r_{2}$. Then $d\left(\phi_{t}(z), \phi_{t-n r_{2}}\left(x_{n}\right)\right)=d\left(\phi_{t}(z), \phi_{t-n r_{2}}(q)\right)=$ $d\left(\phi_{t}(z), \phi_{t}(q)\right) \leq u_{1}$. Thus $z \in W_{u_{1}}^{s}(q)$. For $t \leq 0$, let $-n r_{1} \leq t<$ $-(n-1) r_{1}$.

Then $d\left(\phi_{t}(z), \phi_{t+n r_{1}}\left(x_{n}\right)\right)=d\left(\phi_{t}(z), \phi_{t+n r_{1}}\left(\phi_{-n r_{1}}\right)(p)\right)=d\left(\phi_{t}(z), \phi_{t}(p)\right) \ll$ $u_{1}$. Thus $z \in W_{u_{1}}^{u}(p)$ and it follows that $z \in W_{u_{1}}^{u}(p) \cap W_{u_{1}}^{s}(q) \subset$ $W^{u}(p) \cap W^{s}(q)$.

Define

$$
\begin{gathered}
v_{n}=\phi_{-n r_{2}}(q), t_{n}=r_{2} \text { for } n<0 \\
v_{n}=\phi_{n r_{1}}(p), t_{n}=r_{1} \text { for } n \geq 0
\end{gathered}
$$

then $\left(\left\{v_{n}\right\},\left\{t_{n}\right\}\right)$ is also a $\left(v_{1}, T\right)$-pseudo orbit. Thus there exists a $w \in X$ that $u_{1}$-traces the $\left(v_{1}, T\right)$-pseudo orbit $\left(\left\{v_{n}\right\},\left\{t_{n}\right\}\right)$. Then $z \in$ $W_{u_{1}}^{s}(p) \cap W_{u_{1}}^{u}(q) \subset W^{s}(p) \cap W^{u}(q)$. By Lemma 3.2, $p \sim q$ and there exists an $(u, T)$-chain from $p$ to $q$ and one from $q$ to $p$.

Concatenating the $(u, T)$-chain from $p$ to $q$ with the $(u, T)$-chain from $q$ to $y$, we obtain an $(u, T)$-chain form $p$ to $y$. In the similar process we find an $(u, T)$-chain from $y$ to $p$. Therefore $p \sim y$. Thus $p \in C$ that is $U \cap \operatorname{Per}(\phi) \subset C$. Since $C$ is closed in $X$, we have $C \supset \overline{U \cap \operatorname{Per}(\phi)} \supset$ $U \cap \overline{\operatorname{Per}(\phi)}=U$. By $C \subset U$, and so we conclude that $C=U$. Thus it follows that $C$ is open in $\Omega(\phi)$.

Let $\phi$ be a flow on a TVS-cone compact metric space $(X, d)$. we recall that a set $A \subset X$ is said to be topologically transitive with respect to $\phi$ if for any open sets $U$ and $V$ in $X$ such that $U \cap A$ and $V \cap A$ are nonempty, there exists $T>0$ such that $\phi_{T}(U) \cap V \neq \emptyset$.

Proposition 3.4. Let $\phi$ be a flow on a compact TVS-cone metric space $(X, d)$. If $\phi$ has the POTP and $C$ is a chain component, then $C$ is topologically transitive with respect to the flow $\phi$.

Proof. Let $U, V$ be nonempty open sets in $C$ and let $x \in U, y \in V$. Then there exists a vector $u \gg 0$ such that $B(x, u) \cap C \subset U, B(y, u) \cap C \subset$ $V$ and $B(x, u) \cap \operatorname{CR}(\phi) \subset C, B(y, u) \cap \operatorname{CR}(\phi) \subset C$. Take a vector $v \gg 0$ satisfying definition of the POTP with respect to $u$.

By $x \sim y$, there is a $(v, 1)$-chain from $x$ to itself passing $y\left\{x_{0}=\right.$ $\left.z, \cdots, x_{n}=y, \cdots, x_{m}=x ; t_{0}, \cdots, t_{m-1}\right\}$ Then we can extend $(v, 1)$ chain to a periodic $(v, 1)$-pseudo orbit $\left(\left\{x_{i}\right\},\left\{t_{i}\right\}\right)$. By Remark 2.5, there is a periodic point $z \in X$ that $u$-traces the periodic $(v, 1)$-pseudo orbit ( $\left.\left\{x_{i}\right\},\left\{t_{i}\right\}\right)$.

Since $d(z, x)=d\left(\phi_{0}(z), \phi_{0-s_{0}}\left(x_{0}\right)\right) \ll u$, we have $z \in B(x, u) \cap$ $\operatorname{CR}(\phi) \subset B(x, u) \cap C \subset U$. By $d\left(\phi_{s_{n}}(z), y\right)=d\left(\phi_{s_{n}}(z), \phi_{s_{n}-s_{n}}\left(x_{n}\right)\right) \ll u$, we obtain $\phi_{s_{n}}(z) \in B(y, u) \cap \mathrm{CR}(\phi) \subset B(y, u) \cap C \subset V$. Consequently, $\phi_{s_{n}}(U) \cap V \neq \emptyset$.

Therefore $C$ is topologically transitive with respect to $\phi$.
THEOREM 3.5. (The spectral decomposition theorem) Let $\phi$ be an expansive flow on a compact TVS-cone metric space $(X, d)$. If $\phi$ has the POTP, then its nonwandering set $\Omega(\phi)$ can be uniquely represented in the form $\Omega(\phi)=C_{1} \cup \cdots \cup C_{m}$, where $C_{1}, \cdots, C_{m}$ are chain components.

Proof. By Proposition 2.3, we obtain that $\Omega(\phi)=\operatorname{CR}(\phi)$. It is well known that $\mathrm{CR}(\phi)$ has a decompositon into chain components $\left\{C_{i}\right\}$.

By Lemma 2.2 and Lemma 3.3, chain components are open and closed in $\Omega(\phi)$, and are invariant. By Proposition $3.4, \phi$ is topologically transitive on each component. Since $\Omega(\phi)$ is compact, $\Omega(\phi)$ is uniquely expressed as a finite disjoint union $\Omega(\phi)=\bigcup_{i=1}^{m} C_{i}$.

## References

[1] K. B. Lee Topological entropy of Expansive flows on TVS-cone metric spaces, J.Chungcheong Math. Soc., 34, (2021), no.3, 259-269
[2] J. S. Park and S. H. Ku, A spectral decomposition for flows on uniform space, Nonlinear Anal., 200 (2020), 1-8
[3] S. Lin and Y. Ge, Compact-valued continuous relations on TVS-cone metric spaces, Published by Faculty of Sciences and Mathematics, University of Nis, Serbia, Filomat 27 (2013), 327-332.
[4] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817

Kyung Bok Lee
Department of Mathematics
Hoseo University
ChungNam, Republic of Korea
E-mail: kblee@hoseo.edu


[^0]:    Received December 29, 2021; Accepted February 16, 2022.
    2010 Mathematics Subject Classification: Primary 37B40; Secondary 37B02.
    Key words and phrases: TVS-cone metric space, flow, Nonwandering set and chain recurrent set, POTP, expansiveness, stable and unstable sets, topologically transitive, The spectral decomposition theorem.

