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CHARACTERIZATIONS ON ORBITAL INVERSE LIMIT

SYSTEMS

Hahng-Yun Chu and Nakyung Lee

Abstract. In this article, we investigate minimality, transitivity
and mixing property for a shift map on the orbital inverse limit
systems.

1. Introduction

In this article, we study dynamical properties on the orbital inverse
limit systems induced from two cross bonding maps. Actually the sys-
tems is a generalization of the inverse limit systems which is one of
important subjects in dynamical systems, see [1], [2] and [5].

In the orbital inverse limit systems, horizontal directions express in-
verse limit systems and vertical directions mean orbits based on hori-
zontal axes. In [3], the authors proved expansiveness of the shift maps
on the orbital inverse limit spaces. However the two bonding maps in [3]
move differently on two directions from the bonding maps in this article.

Now we first propose the construction of the systems. Let X be a
compact metric space with metric dX . We consider a countable product
space of X,

XZ := {(xi)i∈Z | xi ∈ X for i ∈ Z}.
For points (xi)i∈Z, (yi)i∈Z ∈ XZ, we define a compatible metric d∞ on
XZ given by

d∞((xi)i∈Z, (yi)i∈Z) :=
∑
i∈Z

dX(xi, yi)

2|i|
.
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Let g be a homeomorphism from X to itself. So we also consider a
subspace Xg of XZ defined by

Xg := {(xi)i∈Z ∈ XZ | xi = g(xi+1) for i ∈ Z}.

We say it an orbital space for g, and its element (xi)i∈Z is called a g-orbit
of x where x = x0. It is known that Xg is a compact metric space with
the metric d∞. For k ∈ Z, let pk : XZ → X be a natural projection given
by pk((xi)i∈Z) = xk. For each k ∈ Z, we denote pk := pk|Xg : Xg → X
as the restriction of pk to Xg.

Next we consider a countable product space X :=
(
XZ)N of XZ and

denote an element (xij)ij of X as follows:

(xij)ij :=





...

x(−i)0

..

.
x00
...

xi0
...


,



...

x(−i)1

...

x01
...

xi1
...


, · · · ,



...

x(−i)j

...

x0j
...

xij
...


, · · ·


where xij ∈ X for i ∈ Z, j ∈ N = {0, 1, 2, . . . }. That is, each element of

X has a type of matrix. On the space X, we define a metric d̃ given by

d̃((xij)ij , (yij)ij) :=
∑
i∈Z
j∈N

dX(xij , yij)

2|i| · 3j

for (xij)ij , (yij)ij ∈ X.

A subspace (Xg)N of the product space X is denoted by

(Xg)N := {(xij)ij ∈ X | xij = g(x(i+1)j) for i ∈ Z and j ∈ N},

so it is also a compact metric space. Now we give a shift map on the
product space (Xg)N. Let ς be a (left) shift map on (Xg)N given as
follows:
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ς((xij)ij) = ς





...
x(−i)0

...

x00
...
xi0
...


,



...
x(−i)1

...

x01
...
xi1
..
.


,



...

x(−i)2

...

x02
...

xi2
...


, · · ·



=





...

x(−i)1

...

x01
...

xi1
...


,



...

x(−i)2

...

x02
...

xi2
...


,



...

x(−i)3

...

x03
...

xi3
...


, · · ·


= ((xi(j+1))ij)

for every (xij)ij ∈ (Xg)N. It is obvious that this shift mapping is a
continuous surjection.

Let f : X → X be a continuous surjection satisfying a commuting
property f ◦ g = g ◦ f for the above homeomorphism g. We define a
subspace Xg

f of (Xg)N as

Xg
f := {(xij)ij ∈ (Xg)N | x0j = f(x0(j+1)) for j ∈ N}.

So Xg
f is a closed subset of (Xg)N and thus it is compact in (Xg)N. See

[4]. We sometimes write down lim←−{X
g,Fg} instead of Xg

f and call the

space Xg
f the orbital inverse limit space induced by f with respect to g.

In the systems, the space X is called a factor space and the function f
is called the horizontal bonding function and the function g is called the
vertical bonding function. For more details, see [4].

Throughout this paper, we let that (X, dX) is a compact metric space
and that f : X → X is a continuous surjection and g : X → X is a
homeomorphism with satisfying the commutative condition f ◦g = g◦f .
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2. Transitivity for orbital inverse limit systems

In this section, we deal with several dynamical properties on the
orbital inverse limit systems. For the shift mapping ς, we consider a
restriction σ = ς|Xg

f
: Xg

f → Xg
f of ς to Xg

f . So we also obtain the

inverse function, denoted σf,g := σ−1 : Xg
f → Xg

f . Since

σf,g((xij)ij) = σf,g





...
x(−i)0

...

x00
...
xi0
...


,



...
x(−i)1

...

x01
...
xi1
...


,



...
x(−i)2

...

x02
...
xi2
...


, · · ·



=





...

f(x(−i)0)

...

f(x00)
...

f(xi0)
...


,



...

x(−i)0

...

x00
...

xi0
...


,



...

x(−i)1

...

x01
...

xi1
...


, · · ·


for (xij)ij ∈ Xg

f , we have σf,g((xij)ij) = (f(xij))ij for all (xij)ij ∈ Xg
f .

For l ∈ N, we denote a natural projection with respect to horizontal
direction of (Xg)N as pl : (Xg)N → Xg. Then we have that pl((xij)ij) :=

Orbg(x0l) for each l ∈ N. We denote pl a restriction of pl to Xg
f . Let us

define a continuous surjection Fg : Xg → Xg given by

Fg(T(yj)j) = T(f(yj))j for T(yj)j ∈ Xg.

Thus we get that the restriction pl holds the commutativity as follows:
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that is, pl ◦ σf,g = Fg ◦ pl.
The continuous mapping f from X to itself is said to be minimal if

for any x ∈ X, an orbit of x for f is dense in X. A subset M is minimal
in X with respect to f if M is a closed invariant subset of X and the
restriction f |M : M →M is minimal.

Theorem 2.1. Let Xg
f be an orbital inverse limit space induced by

f with respect to g and let σf,g : Xg
f → Xg

f be a shift map. Let M be a

minimal set in Xg
f with respect to σf,g, then for every i ∈ Z and j ∈ N,

πij(M) is also minimal in X with respect to f . Here πij is a (i, j)-th
projection map from Xg

f .

Proof. Fixed k ∈ Z and l ∈ N, since πkl is a closed map and M is
closed in Xg

f , πkl(M) is closed in X. Since

f(πkl(M)) = πkl(σf,g(M)) = πkl(M),

πkl(M) is invariant under f . Now we prove that πkl(M) = O+
f (x) for

all x ∈ πkl(M). Let x ∈ πkl(M). It is enough to show that πkl(M) ⊆
O+
f (x). Here, O+

f (x) := {fn(x) | n ∈ N}. We choose x ∈ M such

that πkl(x) = x. Then Oσf,g(x) = M because M is minimal. Here,
Oσf,g(x) := {σnf,g(x) | n ∈ Z}. For any y ∈ πkl(M), take y ∈ M such

that πkl(y) = y. Then we can take a subsequence nt of positive integers
such that σnt

f,g(x)→ y as t→∞. Therefore we obtain that

y = πkl(y) = lim
t→∞

πkl(σ
nt
f,g(x)) = lim

t→∞
fnt(πkl(x)) = lim

t→∞
fnt(x).

Hence y ∈ O+
f (x).

Using Theorem 2.1, we obtain directly the next corollaries.

Corollary 2.2. Let Xg be an orbital space for g and Fg : Xg → Xg

an orbital function for g with respect to f . Let Xg
f be an orbital inverse

limit space induced by f with respect to g and let σf,g : Xg
f → Xg

f be a

shift map. Let M be a closed subset of X such that it is invariant under
f . If lim←−{Orb

g(M),Fg} is minimal in Xg
f with respect to σf,g, then M

is also minimal in X with respect to f .
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Corollary 2.3. Let Xg
f be an orbital inverse limit space induced

by f with respect to g and let σf,g : Xg
f → Xg

f be a shift map. If σf,g is

minimal, then f is minimal.

We define that a continuous function f : X → X is (topologically)
transitive if for any nonempty open subsets U and V of X, there is a
positive integer n such that fn(U) ∩ V 6= ∅. If X is compact, then it is
equivalent to the fact that there is an element x of X such that the orbit
of x for f is dense in X. The mapping f is said to be (topologically) mix-
ing if for any nonempty open subsets U and V of X, there is a positive
integer N such that fn(U) ∩ V 6= ∅ for all n ≥ N . We define that f is
chain transitive if for any x, y ∈ X and for any ε > 0, there is a ε-chain in
X of f from x to y, that is, a finite sequence x = x0, x1, · · · , xn−1, xn = y
in X such that d(f(xi), xi+1)) < ε for every i ∈ {0, 1, · · · , n− 1}.

The next theorem shows that the notions of transitivity, mixing and
chain transitivity for the original dynamical systems are equivalent to
the notions of the corresponding properties for the orbital inverse limit
systems induced from the original systems.

Theorem 2.4. Let Xg
f be an orbital inverse limit space induced by

f with respect to g and let σf,g : Xg
f → Xg

f be a shift map. Then the

following properties hold.

(1) f is transitive if and only if σf,g is transitive.
(2) f is mixing if and only if σf,g is mixing.
(3) f is chain transitive if and only if σf,g is chain transitive.

Proof. (1) Suppose that f is transitive. Let U and V be nonempty
open subsets of the product space Xg

f , respectively. Then we choose

u, v ∈ X, k ∈ Z, l ∈ N, and ε > 0 such that

π−1kl (Bε(u)) ⊆ U and π−1kl (Bε(v)) ⊆ V.

Since f is transitive, there is a positive integer n such that fn(Bε(u)) ∩
Bε(v) 6= ∅. Thus

∅ 6= π−1kl (Bε(u) ∩ f−n(Bε(v)))

= π−1kl (Bε(u)) ∩ π−1kl (f−n(Bε(v)))

= π−1kl (Bε(u)) ∩ σ−nf,g (π−1kl (Bε(v)))

⊆ U ∩ σ−nf,g (V).
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Thus we have σnf,g(U) ∩V 6= ∅, so σf,g is transitive.

Conversely, we assume that σf,g is transitive. Let U and V be

nonempty open subsets ofX. Then π−100 (U) and π−100 (V ) are also nonempty
open subsets of Xg

f . Since σf,g is transitive, we can choose a positive

integer n such that

σnf,g(π
−1
00 (U)) ∩ π−100 (V ) 6= ∅.

Then we get

∅ 6= π00(σ
n
f,g(π

−1
00 (U)) ∩ π−100 (V ))

⊆ π00(σ
n
f,g(π

−1
00 (U))) ∩ π00(π−100 (V ))

= fn(π00(π
−1
00 (U))) ∩ V

= fn(U) ∩ V,
so f is transitive.

(2) This proof is similar to that of (1).
(3) We first assume that f is chain transitive. Let x = (xij)ij , y =

(yij)ij ∈ Xg
f . For any ε > 0 we choose a positive integer N satisfying

D
2N

< ε
12 and D

3N
< ε

6 where D := diamX. By the uniform continuity of
f and g, there exists a positive real number δ such that for x, y ∈ X,∑

−N≤i≤N
0≤j≤N

dX(gi(f j(x)), gi(f j(y)))

2|i| · 3j
<
ε

4
.

if dX(x, y) < δ. Since f is chain transitive, there is a δ-chain in X of f

from x0N to y0N , say

z00N = x0N , z
1
0N , z

2
0N , · · · , zn−10N , zn0N = y0N .

For each integer k ∈ (0, n), put zi0(N−j) = f j(zk0N ) if 0 ≤ j ≤ N and

take zki(N−j) = f−1(zki(N−j−1)) if j < 0. For each j ∈ N, we denote

zkij = g−i(zk0j) for all i ∈ Z. For i ∈ Z and j ∈ N, let z0ij = xij and
znij = yij . Then a finite sequence

(z0ij)ij = x, (z1ij)ij , (z
2
ij)ij , · · · , (zn−1ij )ij , (z

n
ij)ij = y

becomes an ε-chain in Xg
f of σf,g from x to y. Indeed, we have that for

0 ≤ k < n

d̃(σf,g((z
k
ij)ij), (z

k+1
ij )ij) =

∑
i∈Z
j∈N

dX(f(zkij), z
k+1
ij )

2|i| · 3j
< ε.
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Thus σf,g is chain transitive.
Conversely, suppose that σf,g is chain transitive. Let x, y ∈ X. We

take two points (xij)ij and (yij)ij of Xg
f with x00 = x and y00 = y,

respectively. Since σf,g is chain transitive, for any ε > 0 we can choose
an ε-chain in Xg

f of σf,g from (xij)ij to (yij)ij , that is,

(z0ij)ij = (xij)ij , (z
1
ij)ij , (z

2
ij)ij , · · · , (zn−1ij )ij , (z

n
ij)ij = (yij)ij .

Then we have that for 0 ≤ k < n

dX(f(zk00), z
k+1
00 ) ≤ d̃(σf,g((z

k
ij)ij), (z

k+1
ij )ij) < ε,

which means that the following finite sequence

z000 = x, z100, z
2
00, · · · , zn−100 , zn00 = y

is an ε-chain in X of f from x to y. This completes the proof.
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