DOI QR코드

DOI QR Code

STUDIES ON MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR SYSTEM OF INITIAL VALUE PROBLEMS

  • Nanware, J.A. (Department of PG Studies and Research in Mathematics Shrikrishna Mahavidyalaya) ;
  • Gadsing, M.N. (Department of Mathematics Jawahar College)
  • 투고 : 2021.08.03
  • 심사 : 2021.09.28
  • 발행 : 2022.02.15

초록

Nonlinear system of initial value problems involving R-L fractional derivative is studied. Monotone iterative technique coupled with lower and upper solutions is developed for the problem. It is successfully applied to study qualitative properties of solutions of nonlinear system of initial value problem when the function on the right hand side is nondecreasing.

키워드

참고문헌

  1. R. P. Agarwal, M. Benchora and S. Hamani, Boundary Value Problems for Fractional Differential Equations, Georgian Math. J., 16 (2009), no. 3, 401-411. https://doi.org/10.1515/GMJ.2009.401
  2. M. Benchora, S. Hamani and S. K. Ntouyas, Boundary Value Problems for Differential Equations with Fractional Order and Nonlocal Conditions, Nonl. Anal., 71 (2009) 2391-2396. https://doi.org/10.1016/j.na.2009.01.073
  3. M. Caputo, Linear Models of Dissipation whose Q is Almost Independent, II, Geophy. J. Roy. Astronom., 13 (1967) 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  4. Z. Denton, and A. S. Vatsala, Monotone Iterative Technique for Finite Systems of Nonlinear Riemann-Liouville Fractional Differential Equations, Opus. Math., 31 (2011), no. 3, 327-339. https://doi.org/10.7494/OpMath.2011.31.3.327
  5. J. V. Devi, Generalized Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations, Comm. Appl. Anal., 12 (2008), no. 4, 399-406.
  6. D. B. Dhaigude, B. R. Sontakke, C. D. Dhaigude, Monotone Technique for Nonlinear Degenerate Weakly Coupled System of Parabolic Problems, Comm. Appl. Anal., 15 (2011), no. 1, 13-24.
  7. D. B. Dhaigude, J. A. Nanware and V. R. Nikam, Monotone technique for system of Caputo fractional differential equations with periodic boundary conditions, Dyn. Conti. Disc. Impul. Sys., 19 (2012), no. 5, 575-584.
  8. D. B. Dhaigude, N. B. Jadhav and J. A. Nanware, Method of upper lower solutions for nonlinear system of fractional differential equations and applications, Malaya J. Math., 6 (2018), no. 3, 467-472. https://doi.org/10.26637/MJM0603/0001
  9. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, : North-Holland Mathematics Studies, 204 Elsevier Science BV, Amsterdam, 2006.
  10. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Non-linear Differential Equations, Pitman Advanced Publishing Program, London, 1985.
  11. V. Lakshmikantham and A. S. Vatsala, General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations, Appl. Math. Lett., 21 (2008), no. 8, 828-834. https://doi.org/10.1016/j.aml.2007.09.006
  12. V. Lakshmikantham and A. S. Vatsala, Theory of Fractional Differential Equations and Applications, Commun. Appl. Anal., 11 (2007) 395-402.
  13. V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
  14. L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Second Edition, Taylor and Francis Group, New York, 2007.
  15. F. A. McRae, Monotone Iterative Technique and Existence Results for Fractional Differential Equations, Nonl. Anal., 71 (2009), no. 12, 6093-6096. https://doi.org/10.1016/j.na.2009.05.074
  16. J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Monotone Iterative Technique for Finite System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. Conf. Mathematical Sciences 2014, Elsevier, (2014) 235-238.
  17. J. A. Nanware and D. B. Dhaigude, Boundary Value Problems for Differential Equations of Noninteger Order Involving Caputo Fractional Derivative, Proce. Jangjeon Math. Soci., 24 (2014), no. 3, 369-376.
  18. J. A. Nanware and D. B. Dhaigude, Existence and Uniqueness of solution of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. J. Nonlinear Sci., 14 (2012), no. 4, 410-415.
  19. J. A. Nanware and D. B. Dhaigude, Existence and Uniqueness of Solution of Differential Equations of Fractional Order with Integral Boundary Conditions, J. Nonl. Sci. Appl., 7 (2014), 246-254. https://doi.org/10.22436/jnsa.007.04.02
  20. J. A. Nanware and D. B. Dhaigude, Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Math. Modelling Sci. Computation, Springer-Verlag, 283 (2012), 395-402. https://doi.org/10.1007/978-3-642-28926-2_43
  21. J. A. Nanware and D. B. Dhaigude, System of Initial Value Problems for Fractional Differential Equations Involving Riemann-Liouville Sequential Derivative, Comm. Appl. Anal., 22 (2018), no. 3, 353-368.
  22. J. A. Nanware, D. B. Dhaigude, Monotone Technique for Finite System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti., Disc. Impul. Sys., 22 (2015), no. 1, 13-23.
  23. J. A. Nanware, Existence and Uniqueness Results for Fractional Differential Equations Via Monotone Method, Bull. Marath. Math. Soci., 14 (2013), 39-56.
  24. J. A. Nanware, M. N. Gadsing, Nonlinear System of Boundary Value Problem Involving ψ- Caputo Fractional Derivative, J. Math. Control Sci. Appl., 7 (2021), no. 2, 163-172.
  25. J. A. Nanware, M. N. Gadsing, Qualitative properties of solutions of nonlinear boundary value problem involving ψ-Caputo Fractional Derivative, J. Math. Comput. Sci., 11 (2021), no. 5, 6308-6326.
  26. J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Initial value problems for fractional differential equations involving Riemann-Liouville derivative, Malaya J. Math., 5 (2017), no. 2, 337-345. https://doi.org/10.26637/mjm502/012
  27. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  28. B. R. Sontakke, Monotone Method for Nonlinear Weakly Coupled Time Degenerate System with Nonlinear Boundary Conditions, J. Adv. Res. Dyn. Cont. Sys., 6 (2014), no. 4, 1-12.
  29. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  30. J. V. Devi, Generalized Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations, Comm. Appl. Anal., 12 (2008), no. 4, 399-406.
  31. Z. Wei, Q. Li and J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), no. 1, 260-272. https://doi.org/10.1016/j.jmaa.2010.01.023
  32. Z. Wei and W. Dong, Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations, Electron. J. Qual. Theory Diff. Equ., 87 (2011), 1-13.