참고문헌
- R. P. Agarwal, M. Benchora and S. Hamani, Boundary Value Problems for Fractional Differential Equations, Georgian Math. J., 16 (2009), no. 3, 401-411. https://doi.org/10.1515/GMJ.2009.401
- M. Benchora, S. Hamani and S. K. Ntouyas, Boundary Value Problems for Differential Equations with Fractional Order and Nonlocal Conditions, Nonl. Anal., 71 (2009) 2391-2396. https://doi.org/10.1016/j.na.2009.01.073
- M. Caputo, Linear Models of Dissipation whose Q is Almost Independent, II, Geophy. J. Roy. Astronom., 13 (1967) 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Z. Denton, and A. S. Vatsala, Monotone Iterative Technique for Finite Systems of Nonlinear Riemann-Liouville Fractional Differential Equations, Opus. Math., 31 (2011), no. 3, 327-339. https://doi.org/10.7494/OpMath.2011.31.3.327
- J. V. Devi, Generalized Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations, Comm. Appl. Anal., 12 (2008), no. 4, 399-406.
- D. B. Dhaigude, B. R. Sontakke, C. D. Dhaigude, Monotone Technique for Nonlinear Degenerate Weakly Coupled System of Parabolic Problems, Comm. Appl. Anal., 15 (2011), no. 1, 13-24.
- D. B. Dhaigude, J. A. Nanware and V. R. Nikam, Monotone technique for system of Caputo fractional differential equations with periodic boundary conditions, Dyn. Conti. Disc. Impul. Sys., 19 (2012), no. 5, 575-584.
- D. B. Dhaigude, N. B. Jadhav and J. A. Nanware, Method of upper lower solutions for nonlinear system of fractional differential equations and applications, Malaya J. Math., 6 (2018), no. 3, 467-472. https://doi.org/10.26637/MJM0603/0001
- A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, : North-Holland Mathematics Studies, 204 Elsevier Science BV, Amsterdam, 2006.
- G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Non-linear Differential Equations, Pitman Advanced Publishing Program, London, 1985.
- V. Lakshmikantham and A. S. Vatsala, General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations, Appl. Math. Lett., 21 (2008), no. 8, 828-834. https://doi.org/10.1016/j.aml.2007.09.006
- V. Lakshmikantham and A. S. Vatsala, Theory of Fractional Differential Equations and Applications, Commun. Appl. Anal., 11 (2007) 395-402.
- V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
- L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Second Edition, Taylor and Francis Group, New York, 2007.
- F. A. McRae, Monotone Iterative Technique and Existence Results for Fractional Differential Equations, Nonl. Anal., 71 (2009), no. 12, 6093-6096. https://doi.org/10.1016/j.na.2009.05.074
- J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Monotone Iterative Technique for Finite System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. Conf. Mathematical Sciences 2014, Elsevier, (2014) 235-238.
- J. A. Nanware and D. B. Dhaigude, Boundary Value Problems for Differential Equations of Noninteger Order Involving Caputo Fractional Derivative, Proce. Jangjeon Math. Soci., 24 (2014), no. 3, 369-376.
- J. A. Nanware and D. B. Dhaigude, Existence and Uniqueness of solution of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. J. Nonlinear Sci., 14 (2012), no. 4, 410-415.
- J. A. Nanware and D. B. Dhaigude, Existence and Uniqueness of Solution of Differential Equations of Fractional Order with Integral Boundary Conditions, J. Nonl. Sci. Appl., 7 (2014), 246-254. https://doi.org/10.22436/jnsa.007.04.02
- J. A. Nanware and D. B. Dhaigude, Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Math. Modelling Sci. Computation, Springer-Verlag, 283 (2012), 395-402. https://doi.org/10.1007/978-3-642-28926-2_43
- J. A. Nanware and D. B. Dhaigude, System of Initial Value Problems for Fractional Differential Equations Involving Riemann-Liouville Sequential Derivative, Comm. Appl. Anal., 22 (2018), no. 3, 353-368.
- J. A. Nanware, D. B. Dhaigude, Monotone Technique for Finite System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti., Disc. Impul. Sys., 22 (2015), no. 1, 13-23.
- J. A. Nanware, Existence and Uniqueness Results for Fractional Differential Equations Via Monotone Method, Bull. Marath. Math. Soci., 14 (2013), 39-56.
- J. A. Nanware, M. N. Gadsing, Nonlinear System of Boundary Value Problem Involving ψ- Caputo Fractional Derivative, J. Math. Control Sci. Appl., 7 (2021), no. 2, 163-172.
- J. A. Nanware, M. N. Gadsing, Qualitative properties of solutions of nonlinear boundary value problem involving ψ-Caputo Fractional Derivative, J. Math. Comput. Sci., 11 (2021), no. 5, 6308-6326.
- J. A. Nanware, N. B. Jadhav and D. B. Dhaigude, Initial value problems for fractional differential equations involving Riemann-Liouville derivative, Malaya J. Math., 5 (2017), no. 2, 337-345. https://doi.org/10.26637/mjm502/012
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- B. R. Sontakke, Monotone Method for Nonlinear Weakly Coupled Time Degenerate System with Nonlinear Boundary Conditions, J. Adv. Res. Dyn. Cont. Sys., 6 (2014), no. 4, 1-12.
- S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
- J. V. Devi, Generalized Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations, Comm. Appl. Anal., 12 (2008), no. 4, 399-406.
- Z. Wei, Q. Li and J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), no. 1, 260-272. https://doi.org/10.1016/j.jmaa.2010.01.023
- Z. Wei and W. Dong, Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations, Electron. J. Qual. Theory Diff. Equ., 87 (2011), 1-13.