DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Aster glehni Water Extracts in LPS-stimulated RAW 264.7 Macrophages

산백국(山白菊) 열수추출물이 RAW 264.7 대식세포에 미치는 항염증 효과

  • Ko, Ho-Geon (Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean medicine, Sangji University) ;
  • Lee, Kyou-Young (Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean medicine, Sangji University) ;
  • Hong, Chul-Hee (Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean medicine, Sangji University)
  • 고호건 (상지대학교 한의과대학 안이비인후피부과학교실) ;
  • 이규영 (상지대학교 한의과대학 안이비인후피부과학교실) ;
  • 홍철희 (상지대학교 한의과대학 안이비인후피부과학교실)
  • Received : 2022.01.14
  • Accepted : 2022.02.11
  • Published : 2022.02.25

Abstract

Objectives : This study was conducted to confirm the anti-inflammatory effects of Aster glehni Water extracts. Methods : In this study, MTT assay was performed to detect cell viability. To evaluate the anti-inflammatory effects of Aster glehni Water extracts, we examined NO production in LPS-induced macrophages. Expressions of iNOS, COX-2, ERK, p38, JNK were also investigated by using western blot assay. Results : Aster glehni Water extracts have no cytotoxicity at 15.625-1,000㎍/㎖ in RAW 264.7 cells. Aster glehni Extracts inhibited the NO production in a dose-dependent manner in RAW 264.7 cells treated with LPS. Pretreated 250, 500, 1,000㎍/㎖ of Aster glehni water extracts had significantly suppressed expression levels of iNOS, COX-2, p-ERK, p-p38, p-JNK. Conclusions : These results suggest that Aster glehni Water extracts have anti-inflammatory effects and can be used for various inflammatory skin diseases.

Keywords

References

  1. Sung YY, Kim DS, Yang WK, Nho KJ, Seo H S, Kim YS, et al. Inhibitory effects of Drynaria fortunei extracts on house dust mite antigen-induced atopic dermatitis in NC/Nga mice. J Ethnopharmacol. 2012;144(1):94-100. https://doi.org/10.1016/j.jep.2012.08.035
  2. Cho W, Nam JW, Kang HJ, Windono T, Seo EK, Lee KT. Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the in hibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-κ B pathway in LPS-stimulated murine macrophages. Int. Immunopharmacol. 2009;9(9):1049-57. https://doi.org/10.1016/j.intimp.2009.04.012
  3. Kim DH, Hwang EY, Son JH. Anti-inflammatory activity of Carthamus tinctorious seed extracts in Raw 264.7 cells. J Life Sci. 2013;23(1):55-62. https://doi.org/10.5352/JLS.2013.23.1.55
  4. Guzik T, Adamek-Guzik T. Nitric oxide and superoxide in inflammation. J Physiol Pharmacol. 2003;54(4):469-87.
  5. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-52. https://doi.org/10.1038/nature01320
  6. Jeong DH, Kim KBWR, Kang BK, Jung SA, Kim HJ, Jeong HY, et al. Anti-inflammatory activity of the Undaria pinnatifida water extract. J Appl Biol Chem. 2012;55(4):221-5. https://doi.org/10.3839/jabc.2012.035
  7. Kang BK, Kim KBWR, Kim MJ, Bark SW, Pak WM, Kim BR, et al. Anti-inflammatory activity of an ethanol extract of Laminaria japonica root on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Korean J Food Sci Technol. 2014;46(6):729-33. https://doi.org/10.9721/KJFST.2014.46.6.729
  8. Jung BS, Shin MG. Dohae Hyangyak Dictionary. Yeonglimsa. 2003:1020-1.
  9. Seo SW, Kim KS. Antioxidant Activities of Aster glehni Extracted with Different Solvents. Iran J Public Health. 2019;48(1):176-8.
  10. Kim HH, Park GH, Park KS, Lee JY, An BJ. Anti-oxidant and Anti-inflammation Activity of Fractions from Aster glehni Fr. Schm.. Kor. J. Microbiol. Biotechnol. 2010;38(4):434-41.
  11. Lee HM, Yang GS, Ahn TG, Kim MD, An HJ. Antiadipogenic Effects of Aster glehni Extract: In Vivo and In Vitro Effects. Evid Based C omplement Alternat Med. 2013;2013:1-10.
  12. Nugroho A, Kim MH, Choi JW, Choi JS, Jung WT. Phytochemical studies of the phenolic substances in Aster glehni extract and its sedative and anticonvulsant activity. Arch Pharm Res. 2012;35(3):423-30. https://doi.org/10.1007/s12272-012-0304-7
  13. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1-2):15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  14. Hwang JH, Kim KJ, Ryu SJ, Lee BY. Caffeine prevents LPS-induced inflammatory responses in RAW 264.7 cells and zebrafish. Chemico biological interaction. 2016;248:1-7. https://doi.org/10.1016/j.cbi.2016.01.020
  15. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679-92. https://doi.org/10.1038/nri3495
  16. Lee YS, Kim HS, Kim SK, Kim SD. IL-6 mRNA Expression in Mouse Peritoneal Macrophages and NIH3T3 Fibroblasts in Response to Candida albicans. J Microbiol Biotechnol. 2000;10(1):8-15.
  17. Higuchi M, Higashi N, Taki H, Osawa T. Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the major cytolytic mechanism of activated macrophages. J Immunol. 1990;144(4):1425-31. https://doi.org/10.4049/jimmunol.144.4.1425
  18. Jeong H, Sung M, Kim Y, Ham H, Choi Y, Lee J. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 inducti on in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr. 2012;41(7):888-94. https://doi.org/10.3746/JKFN.2012.41.7.888
  19. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. Anti-inflammatory effects of extracts f rom Ligustrum ovalifolium H. leaves on RAW264.7 macrophages. J Korean Soc Food Sci Nutr. 2012;41(9):1205-10. https://doi.org/10.3746/JKFN.2012.41.9.1205
  20. Kim DH, Hwang EY, Son JH. Anti-inflammatory activity of Carthamus tinctorious seed extract in Raw 264.7 cells. J Life Sci. 2013;23(1):55-62. https://doi.org/10.5352/JLS.2013.23.1.55
  21. Miyasaka N, Hirata Y. Nitric oxide and inflammatory arthritides. Life Sci. 1997; 61(21):2073-81. https://doi.org/10.1016/S0024-3205(97)00585-7
  22. Simmons ML, Murphy S. Induction of nitric oxide from glial cells. J Neurochem. 1992;59(3):8 97-905. https://doi.org/10.1111/j.1471-4159.1992.tb08328.x
  23. Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygen-ase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum. 2003;33(3):155-67. https://doi.org/10.1016/S0049-0172(03)00134-3
  24. Needleman P, Isakson PC. The discovery and function of COX-2. J Rheumatol. 1997;49:6-8.
  25. Seybold VS, Jia YP, Abrahams LG. Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain. 2003;105(1-2):47-55. https://doi.org/10.1016/S0304-3959(03)00254-9
  26. Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25-35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. J Agric Food Chem. 2014;62(21):4911-6. https://doi.org/10.1021/jf501314g
  27. Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, et al. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidy linositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology. 2005;115(3):366-74. https://doi.org/10.1111/j.1365-2567.2005.02160.x
  28. Meyer CF, Wang X, Chang C, Templeton D, Tan TH. Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating kappaB enhancer activation. J Biol Chem. 1996;271(15):8971-6. https://doi.org/10.1074/jbc.271.15.8971