DOI QR코드

DOI QR Code

COMMON n-TUPLED FIXED POINT THEOREM UNDER GENERALIZED MIZOGUCHI-TAKAHASHI CONTRACTION FOR HYBRID PAIR OF MAPPINGS

  • Deshpande, Bhavana (Department of Mathematics, Govt. Arts and Science College) ;
  • Handa, Amrish (Department of Mathematics, Govt. P. G. Arts and Science College)
  • Received : 2020.08.31
  • Accepted : 2021.10.06
  • Published : 2022.02.28

Abstract

We establish a common n-tupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction. An example is given to validate our results. We improve, extend and generalize several known results.

Keywords

References

  1. A. Amini-Harandi & D. O'Regan: Fixed point theorems for set-valued contraction type mappings in metric spaces. Fixed Point Theory Appl. 2010, 7 (2010). Article ID 390183.
  2. T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  3. S. Banach: Sur les Operations dans les Ensembles Abstraits et leur. Applications aux Equations Integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  4. L. Ciric, B. Damjanovic, M. Jleli & B. Samet: Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications. Fixed Point Theory Appl. 2012, 51.
  5. B. Deshpande: Common fixed point for set and single valued functions without continuity and compatibility. Math. Morav. 11 (2007), 27-38. https://doi.org/10.5937/MatMor0711027D
  6. B. Deshpande & S. Chouhan: Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on noncomplete metric spaces. Southeast Asian Bull. Math. 35 (2011), 851-858.
  7. B. Deshpande & A. Handa: Common n-tupled fixed point for hybrid pair of mappings under new contractive condition. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), no. 3, 165-181.
  8. B. Deshpande & A. Handa, n-tupled coincidence and fixed point result for hybrid pair of mappings under generalized nonlinear contraction. Southeast Asian Bull. Math. 40 (2016), 655-670.
  9. B. Deshpande & R. Pathak. Fixed point theorems for noncompatible discontinuous hybrid pairs of mappings on 2- metric spaces. Demonstr. Math. XLV 2012, no. 1, 143-154.
  10. W.S. Du: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi's condition in quasi ordered metric spaces. Fixed Point Theory Appl. 2010, 9 (2010) Article ID 876372.
  11. J. Harjani, B. Lopez & K. Sadarangani: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 74 (2011), 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
  12. M. Imdad, A.H. Soliman, B.S. Choudhury & P. Das: On n-tupled coincidence point results in metric spaces. Journal of Operators Volume 2013, Article ID 532867, 8 pages.
  13. I. Kubiaczyk & B. Deshpande: A common fixed point theorem for multivalued mappings through T-weak commutativity. Math. Morav. 10 (2006), 55-60.
  14. I. Kubiaczyk & B. Deshpande: Common fixed point of multivalued mappings without continuity. Fasc. Mathe. 37 (2007), no. 9, 19-26.
  15. I. Kubiaczyk & B. Deshpande: Noncompatibility, discontinuity in consideration of common fixed point of set and single valued mappings. Southeast Asian Bull. Math. 32 (2008), 467-474.
  16. V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  17. J.T. Markin: Continuous dependence of fixed point sets. Proc. Amer. Math. Soc. 38 (1947), 545-547. https://doi.org/10.1090/S0002-9939-1973-0313897-4
  18. N. Mizoguchi & W. Takahashi: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177-188. https://doi.org/10.1016/0022-247x(89)90214-x
  19. S.B. Nadler: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  20. J. Rodriguez-Lopez & S. Romaguera: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
  21. S. Sharma & B. Deshpande. Fixed point theorems for set and single valued mappings without continuity and compatibility. Demonstr. Math. XL (2007), no. 3, 649-658.
  22. S. Sharma & B. Deshpande: Compatible multivalued mappings satisfying an implicit relation. Southeast Asian Bull. Math. 30 (2006), 535-540.