DOI QR코드

DOI QR Code

사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel

  • 정호영 (부경대학교 에너지자원공학과) ;
  • 임주휘 (서울대학교 에너지신산업 혁신공유대학사업단) ;
  • 민기복 (서울대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과) ;
  • 최승범 (한국원자력연구원 저장처분기술관리부) ;
  • 신영진 (현대건설 기술연구소)
  • Hoyoung, Jeong (Department of Energy Resources Engineering, Pukyong National University) ;
  • Juhyi, Yim (Convergence and Open sharing System for New Energy Industry, Seoul National University) ;
  • Ki-Bok, Min (Department of Energy Resources Engineering, Seoul National University) ;
  • Sangki, Kwon (Department of Energy Resources Engineering, Inha University) ;
  • Seungbeom, Choi (Disposal safety evaluation research division, Korea Atomic Energy Research Institute) ;
  • Young Jin, Shin (R&D Center, Hyundai Engineering and Construction)
  • 투고 : 2022.12.07
  • 심사 : 2022.12.14
  • 발행 : 2022.12.31

초록

사용후핵연료의 심층처분 개념에서 근계영역 암반은 열-수리-역학적 복합거동을 하게 되는 것으로 잘 알려져있다. 이러한 복합거동 과정에서 암석의 여러 물성들은 변화하는데, 이러한 물성변화를 합리적으로 반영하는 경우 고준위방사성폐기물 처분장의 장기안정성의 평가를 위해 활용되는 해석 및 현장시험의 신뢰도를 향상시킬 수 있다. 이를 위해 본 기술보고에서는 암석의 열-수리-역학적 간접복합거동에 관한 국내외 연구사례를 조사하고 분석하였다. 특히, 간접복합거동의 대표적인 사례 중 지하수에 의한 포화 및 온도 증가에 따른 암석의 여러 물성 변화, 응력 변화에 의한 투수계수 변화를 중점적으로 조사·요약하였다.

In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(No. 2021040101003C). 또한, 제 1저자는 교육부 재원 한국연구재단의 지원(2021R1G1A1091572)을 받았습니다. 연구 지원에 감사드립니다.

참고문헌

  1. Bao, T., Hashiba, K., and Fukui, K., 2021, Effect of water saturation on the brazilian tension test of rocks, Materials Transactions, 62(1), 48-56. https://doi.org/10.2320/matertrans.m-m2020857
  2. Brignoli, M., Santarelli, F.J., and Papamichos, E., 1995, Capillary effects in sedimentary rocks: application to reservoir waterflooding. In: 35th US symposium on rock mechanics, 619-626
  3. Burshtein, L., 1969, Effect of moisture on the strength and deformability of sandstone. Journal of Mining Science, 5(5), 573-576. https://doi.org/10.1007/BF02501278
  4. Chen, Y.L., Ni, J., Shao, W., and Azzam, R., 2012, Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading, Int. J. Rock Mech. Min. Sci., 56, 62-66. https://doi.org/10.1016/j.ijrmms.2012.07.026
  5. Chen, Z., Narayan, S., Yang, Z., and Rahman, S., 2000, An experimental investigation of hydraulic conductivity for compression variability, Soil and Underground Environment, 8(4), 1-11.
  6. Cheon, D., Lee, H., Lee, C., and Lee, H., 1999, A study on hydro-mechanical behavior of rock joints using rotary shear testing apparatus, Tunnel and Underground Space, 9(4), 328-336.
  7. Cherblanc, F., Berthonneau, J., Bromblet, P., and Huon, V., 2016, Influence of water content on the mechanical behaviour of limestone: role of the clay minerals content, Rock Mech Rock Eng, 49, 2033-2042. https://doi.org/10.1007/s00603-015-0911-y
  8. Choi, S.B., Lee, S.D., and Jeon, S.W., 2018, Experimental study on the change of rock properties due to water saturation, Tunn. Undergr. Sp., 28(5), 476-492. https://doi.org/10.7474/TUS.2018.28.5.476
  9. Colback, P.S.B. and Wild, B.L., 1965, The influence of moisture content on the compressive strength of rock, In: Proc 3rd Canad rock mech symp.
  10. Dwivedi, R.D., Goel, R.K., Prasad, V.V.R., and Sinha, A., 2008, Thermomechanical properties of Indian and other granites. Int. J. Rock Mech. Min. Sci., 45, 303-315. https://doi.org/10.1016/j.ijrmms.2007.05.008
  11. Dyke, C. and Dobereiner, L., 1991, Evaluating the strength and deformability of sandstones. Quarterly Journal of Engineering Geology and Hydrogeology, 24(1), 123-134. https://doi.org/10.1144/gsl.qjeg.1991.024.01.13
  12. Erguler, Z.A. and Ulusay, R., 2009, Water-induced variations in mechanical properties of clay-bearing rocks, Int. J. Rock Mech. Min. Sci., 46(2), 355-370. https://doi.org/10.1016/j.ijrmms.2008.07.002
  13. Esaki, T., Du, S., Mitani, Y., Ikusada, K., and Jing, L., 1999, Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint, International Journal of Rock Mechanics and Mining Sciences, 36(5), 641-650. https://doi.org/10.1016/S0148-9062(99)00044-3
  14. Esaki, T., Hojo, H., Kimura, T., and Kammeda, N., 1991, Shear-flow coupling test on rock joints, Proceedings of the 7th ISRM Congress, 389-392.
  15. Feda, J., 1966, The influence of water content on the behavior of subsoil, formed by highly weathered rocks. Proceedings of 1st ISRM Congress, Lisbon, 283-288
  16. Gajic, V., Matovic, V., Vasic, N., and Sreckovic-Batocanin, D., 2011, Petrophysical and mechanical properties of the Struganik limestone (Vardar zone, Western Serbia), Geoloski anali Balkanskog poluostrva, 72, 87-100. https://doi.org/10.2298/GABP1172087G
  17. Gale, J., 1982, The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships, Proceedings of the 23rd US symposium on Rock Mechanics, 290-298.
  18. Gangi, A., 1978, Variation of whole and fractured porous rock permeability with confining pressure, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(5), 249-257. https://doi.org/10.1016/0148-9062(78)90957-9
  19. Gautam, P.K., Verma, A.K., Jha, M.K., Sharma, P., and Singh, T.N., 2018, Effect of high temperature on physical and mechanical properties of Jalore granite, Journal of Applied Geophysics, 159, 460-474. https://doi.org/10.1016/j.jappgeo.2018.07.018
  20. Gentier, S., Petitjean, C., Riss, J., and Archambault, G., 1996, Hydromechanical behavior of natural joint under shearing, Proceedings of the 2nd NARMS, Montreal, 1201-1208.
  21. Guha Roy, D., Singh, T.N., Kodikara, and J., Das, R., 2017, Effect of water saturation on the fracture and mechanical properties of sedimentary rocks, Rock Mech. Rock Eng., 50, 2585-2600. https://doi.org/10.1007/s00603-017-1253-8
  22. Hawkins, A.B. and McConnell, B.J., 1992, Sensitivity of sandstone strength and deformability to changes in moisture content, Quarterly Journal of Engineering Geology and Hydrogeology, 25(2), 115-130. https://doi.org/10.1144/gsl.qjeg.1992.025.02.05
  23. Iwano, M. and Einstein, H.H., 1995, Laboratory experiments on geometric and hydromechanical characteristics of three different fractures in granodiorite, Proceedings of the 8th ISRM Congress, 743-750.
  24. Jaeger, J.C. and Cook, N.G.W., 2007, Zimmerman, R., Fundamental of rock mechanics. 4th edition, Wiley-Blackwell, Singapore.
  25. Johnston, D.H., 1987, Physical properties of shale at temperature and pressure, Geophysics, 52(10), 1391-1401. https://doi.org/10.1190/1.1442251
  26. Karakul, H. and Ulusay, R., 2013, Empirical correlations for predicting strength properties of rocks from P-wave velocity under differnet degrees of saturation, Rock Mech. Rock Eng. 46, 981-999. https://doi.org/10.1007/s00603-012-0353-8
  27. Kataoka, M., Bao, T., Hashiba, K., and Fukui, K., 2017, Effect of Water Saturation on Stress-Strain Curve of Rocks in Uniaxial Compression, Journal of MMIJ, 133(6), 107-115. https://doi.org/10.2473/journalofmmij.133.107
  28. Keshavarz, M., Pellet, F.L., and Loret, B., 2010, Damage and changes in mechanical properties of a gabbro thermally loaded up to 1000°C. Pure Appl. Geophys., 167, 1511-1523. https://doi.org/10.1007/s00024-010-0130-0
  29. Kim, E. and Changani, H., 2016, Effect of water saturation and loading rate on the mechanical properties of Red and Buff sandstones, Int. J. Rock Mech. Min. Sci., 88, 23-28. https://doi.org/10.1016/j.ijrmms.2016.07.005
  30. Kim, J.H., Lee, M.S., Lee, M.H., Lee, J.M., and Park, S.M., 2011, A study on effects of temperature for physical properties change of rocks, Jour. Petrol. Soc. Korea, 20(3), 141-149. https://doi.org/10.7854/JPSK.2011.20.3.141
  31. Kim, J.W., Choi, J.H., Choe, K.B., Sim, S.M., and Lee, D.S., 2017, Measurement of rock permeability considering in-situ stress conditions, Tunn. Undergr. Space, 27(1), 26-38. https://doi.org/10.7474/TUS.2017.27.1.026
  32. Lashkaripour, G.R., 2002, Predicting mechanical properties of mudrock from index parameters, Bull. Eng. Geol. Environ., 61, 73-77. https://doi.org/10.1007/s100640100116
  33. Lee, H. S., 1999, A study for the mechanical and hydraulic behavior of rock joints under cyclic shear loading. Seoul National University, Doctorial dissertation (in Korean).
  34. Lee, K.H., Lee, H.Y., and Shin, J.S., 1990, A study on thermal cracking and physical properties of two granitic stones, Journral of the Korean Society of Mineral and Energy Resources Engineers, 27, 31-42.
  35. Li, D. and Wang, W., 2019, Quantitative analysis of the influence of saturation on rock strength reduction considering the distribution of water, Geomech. Geophys. Geo-energ. Geo-resour., 5, 197-207. https://doi.org/10.1007/s40948-019-00106-3
  36. Li, Z., and Reddish, D., 2004, The effect of groundwater recharge on broken rocks. International Journal of Rock Mechanics and Mining Science, 41(3), 280-285 https://doi.org/10.1016/j.ijrmms.2004.03.054
  37. Liang, W.G., Xu, S.G., and Zhao, Y.S., 2006, Experimental study of temperature effects on physical and mechanical characteristics of salt rock, Rock Mech. Rock Eng., 39(5), 469-482. https://doi.org/10.1007/s00603-005-0067-2
  38. Lin, M.L., Jeng, F.S., Tsai, L.S., and Huang, T.H., 2005, Wetting weakening of tertiary sandstones-microscopic mechanism, Environ. Geol., 48, 265-275. https://doi.org/10.1007/s00254-005-1318-y
  39. Liu, S. and Xu, J., 2015. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng. Geol., 185, 63-70. https://doi.org/10.1016/j.enggeo.2014.11.013
  40. Mann, R.L., 1960, Effect of pore fluids on the elastic properties of sandstone, Geophysics, 25, 433-444. https://doi.org/10.1190/1.1438713
  41. Martin, R.A., 1966, The effect of moisture on the compressive and tensile strength on a variety of rock materials, MS. Thesis, Missouri University of Science and Technology, United States.
  42. Nur, A. and Simmons G., 1969, The effect of saturation on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2), 183-193. https://doi.org/10.1016/0012-821X(69)90035-1
  43. Olsson, W. and Brown, S., 1993, Hydromechanical response of a fracture undergoing compression and shear, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 845-851. https://doi.org/10.1016/0148-9062(93)90034-B
  44. Papamichos, E., Brignoli, M., and Santarelli, F.J., 1997, An experimental and theoretical study of a partially saturated collapsible rock, Mech Cohes-Frict Mater, 2, 251-278. https://doi.org/10.1002/(SICI)1099-1484(199707)2:3<251::AID-CFM33>3.0.CO;2-#
  45. Park, S., Kim, J.S., Kim, G.Y., and Kwon, S., 2019, Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository, Journal of Korean Tunnelling and Underground Space Association, 21(4), 501-518. https://doi.org/10.9711/KTAJ.2019.21.4.501
  46. Rabat, A., Cano, M., and Tomas, R. (2020). Effect of water saturation on strength and deformability of building calcarenite stones: Correlations with their physical properties. Construction and Building Materials, 232, 117259. https://doi.org/10.1016/j.conbuildmat.2019.117259
  47. Rao, Q.H., Wang, Z., Xie, H.F., and Xie, Q., 2007. Experimental study of mechanical properties of sandstone at high temperature. J. Cent. South Univ. Tech., 14(s1), 478-483. https://doi.org/10.1007/s11771-007-0311-x
  48. Raven, K. and Gale, J., 1985, Water flow in a natural rock fracture as a function of stress and sample size, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(4), 251-261. https://doi.org/10.1016/0148-9062(85)92952-3
  49. Razvi, M.A., 1962, The effect of moisture on the compressive strength and modulus of elasticity of limestone, MS. Thesis, Colorado Schools of Mines, United States.
  50. Rhee, C.G., Choi, W.H., Chang, C.J., Kim, J.Y., and Lee, J.H., 1995, Effect of temperature on index properties and brazilian tensile strength of rocks, The Journal of Engineering Geology, 5(1), pp. 21-29.
  51. Shakoor, A. and Barefield, E.H., 2009, Relationship between unconfined compressive strength and degree of saturation for selected sandstones. Environ. Eng. Geosci., 15, 29-40. https://doi.org/10.2113/gseegeosci.15.1.29
  52. Shao, S.S., Ranjith, P.G., and Chen, B.K., 2013, Influence of high temperature on the mechanical behaviour of Australian Strathbogie granites with different grain sizes. ARMA, 13-325
  53. Singh, B., Ranjith, P.G., Chandrasekharam, D., Viete, D., Singh, H.K., Lashin, A., and Arifi, N., 2015, A Thermo-mechanical properties of Bundelkhand granite near Jhansi, India, Geomech. Geophys. Geo-Energ. Geo-Resour., 1, 35-53. https://doi.org/10.1007/s40948-015-0005-z
  54. Sundaram, P., Watkins, D., and Raph, W., 1987, Laboratory investigations of coupled stress-deformation-hydraulic flow in a natural rock fracture, Proceedings of the 28th US Symposium on Rock Mechanics, 585-592.
  55. Swan, G., 1983, Determination of stiffness and other joint properties from roughness measurements, Rock Mechanics and Rock Engineering, 16(1), 19-38. https://doi.org/10.1007/BF01030216
  56. Taibi, S., Duperret, A., and Fleureau, J.M., 2009, The effect of suction on the hydro-mechanical behaviour of chalk rocks, Eng. Geol., 106(1), 40-50. https://doi.org/10.1016/j.enggeo.2009.02.012
  57. Torok, a. and Vasarhelyi, B., 2010, The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary, Engineering Geology, 115, 237-245. https://doi.org/10.1016/j.enggeo.2010.01.005
  58. Tsang, Y. and Witherspoon, P., 1981, Hydromechanical behavior of a deformable rock fracture subject to normal stress, Journal of Geophysical Research: Solid Earth, 86(B10), 9287-9298. https://doi.org/10.1029/JB086iB10p09287
  59. Vales, F., Nguyen Minh, D., Gharbi, H., and Rejeb, A., 2004, Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France), Applied Clay Science, 26, 197-207. https://doi.org/10.1016/j.clay.2003.12.032
  60. Van Eeckhout, E.M. and Peng, S.S., 1975, The effect of humidity on the compliances of coal mine shales, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 12, 335-340.
  61. Vasarhelyi, B. and Ledniczky K., 1999, Influence of water-saturation and weathering on mechanical properties of Sivac marble, Proceedings of 9th ISRM Congress, Paris, 691-693.
  62. Vasarhelyi, B. and Van, P., 2006, Influence of water content on the strength of rock, Engineering Geology, 84(1), 70-74. https://doi.org/10.1016/j.enggeo.2005.11.011
  63. Vasarhelyi, B., 2002, Influence of the water saturation on the strength of volcanic tuffs. EUROCK 2002, Proceedings of Workshop on volcanic rocks, 89-96.
  64. Vasarhelyi, B., 2005, Statistical analysis of the influence of water content on the strength of the Miocene limestone, Rock Mechanics and Rock Engineering, 38(1), 69-76. https://doi.org/10.1007/s00603-004-0034-3
  65. Vergara, M.R. and Triantafyllidis, T., 2016, Influence of water content on the mechanical properties of an argillaceous swelling rock. Rock Mech. Rock Eng., 49, 2555-2568. https://doi.org/10.1007/s00603-016-0938-8
  66. Verstrynge, E., Adriaens, R., Elsen, J., and Van Balen, K., 2014, Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone, Construction and Building Materials, 54(15), 78-90. https://doi.org/10.1016/j.conbuildmat.2013.12.024
  67. Wild, B., 1970, The influence of moisture on the pre-rupture fracturing of two rock types. Proceedings of 2nd International Conference of Rock Mechanics, Belgrade, 239-245.
  68. Witherspoon, P., Amick, C., Iwai, K., and Gale, J., 1979, Observations of a potential size effect in experimental determination of the hydraulic properties of fractures, Water Resources Research, 15(5), 1142-1146. https://doi.org/10.1029/WR015i005p01142
  69. Witherspoon, P., Wang, J., Iwai, K., and Gale, J., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, 16(6), 1016-1024. https://doi.org/10.1029/WR016i006p01016
  70. Wu, X. and Liu, J., 2003, Factors on the thermal cracking of rocks, Petroleum drilling techniques, 31(5), 24-27. https://doi.org/10.3969/j.issn.1001-0890.2003.05.008
  71. Xu, X.L., Gao, F., Shen, X.M., and Xie, H.P., 2008. Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. Min. Sci. Technol., 18, 413-415.
  72. Yang, C., Mao, H., Huang, X., and Wang, X., 2006, Study on the variation on micostructure and mechanical properties of waterweakening slates, Proceedings of EUROCK 2006, Liege, 173-182.
  73. Yeo, I., Freitas, M.D., and Zimmerman, R., 1998, Effect of shear displacement on the aperture and permeability of a rock fracture, International Journal of Rock Mechanics and Mining Sciences, 35(8), 1051-1070. https://doi.org/10.1016/S0148-9062(98)00165-X
  74. Yilmaz, I., 2010, Influence of water content on the strength and deformability of gypsum. International Journal of Rock Mechanics and Mining Sciences, 47(2), 342-347. https://doi.org/10.1016/j.ijrmms.2009.09.002
  75. Yoon, Y., Beck, Y., and Jo, Y., 2011, Effects of temperature and water pressure on the material properties of granite & limestone from Gagok mine, Tunnel and Underground Space, 21(1), 33-40. https://doi.org/10.7474/TUS.2011.21.1.033
  76. Zhang, D., Gamage, R.P., Anne Perera, M.S., Zhang, C., and Wanniarachchi, W.A.M., 2017, Influence of water saturation on the nechanical behaviour of low-permeability reservoir rocks, Energies, 10, 236. https://doi.org/10.3390/en10020236
  77. Zhang, W., Sun, Q., Hao, S., Geng, J., and Lv, C., 2016, Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment, Applied Thermal Engineering, 98, 1297-1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010
  78. Zhao, J. and Brown, E., 1992, Hydro-thermo-mechanical properties of joints in the Carnmenellis granite, Quarterly Journal of Engineering Geology and Hydrogeology, 25(4), 279-290.
  79. Zhao, Z., 2016, Thermal Influence on Mechanical Properties of Granite: A Microcracking Perspective. Rock Mech Rock Eng., 49, 747-762. https://doi.org/10.1007/s00603-015-0767-1
  80. Zhou, Z.L., Cai, X., Zhao, Y., Chen, L., Xiong, C., and Li, X.B., 2016, Strength characteristics of dry and saturated rock at different strain rates, Transactions of Nonferrous Metals Society of China, 26(7), 1919-1925 https://doi.org/10.1016/s1003-6326(16)64314-5