Acknowledgement
본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 고준위폐기물관리차세대혁신기술개발사업의 지원(2021M2E3A2041312)을 받아 수행된 연구사업입니다.
References
- ASTM, 2008, Standard test method for determining rock quality designation (RQD) of rock core. ASTM D6032-08, ASTM International, PA, USA.
- Bandis, S., Lumsden, A., and Barton, N., 1983, Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
- Barton, N., Lien, R., and Lunde, J., 1974, Engineering classification of jointed rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236.
- Bieniawski, Z.T., 1984, Rock mechanics design in mining and tunneling. A.A. Balkema, Rotterdam.
- Deere, D.U., 1963, Technical description of rock cores for engineering purposes. 13th Colloquium, International Society for Rock Mechanics, Salzburg, Austria, 16-22.
- Gardner, W.S., 1987, Design of drilled piers in the Atlantic Piedmont. In: Smith R.W. editor. Foundations and excavations in decomposed rock of the Piedmont province. New York. ASCE.
- Haftani, M., Chehreh, H.A., Mehinrad, A., and Binazadeh, K., 2016, Practical investigation on use of weighted joint density to decrease the limitations of RQD measurements. Rock Mechanics and Rock Engineering, 49, 1551-1558. https://doi.org/10.1007/s00603-015-0788-9
- Harrison, J.P., 1999, Selection of the threshold value in RQD assessments. International Journal of Rock Mechanics and Mining Sciences, 36, 673-685. https://doi.org/10.1016/S0148-9062(99)00035-2
- Hong, S., Kwon, S., Min, K.B., and Ji, S.H., 2021, Effect of excavation and thermal stress on slip zone and aperture change around disposal hole and tunnel in fractured rock. Tunnel and Underground Space, 31(2), 125-144. https://doi.org/10.7474/TUS.2021.31.2.125
- KAERI, 2010, Fracture zones in deep borehole (DB-01) in KURT. KAERI/TR-4010/2010, KAERI, Deajeon, Korea.
- KAERI, 2017, Fracture distribution characteristics in KURT facility site. KAERI/TR-6981/2017, KAERI, Deajeon, Korea.
- KAERI, 2021, Lithological analysis of DB-2 borehole around KURT with depth. KAERI/TR-9012/2021, KAERI, Deajeon, Korea.
- KIGAM, 2019, Development of nationwide geoenvironmental maps for HLW geological disposal. GP2017-009-2019, KIGAM, Daejeon, Korea.
- Ku, C.Y., Hsu, S.M., Chiou, L.B., and Lin, G.F., 2009, An empirical model for estimating hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan. Engineering Geology, 109(3-4), 213-223. https://doi.org/10.1016/j.enggeo.2009.08.008
- Kulhawy, F.H. and Goodman, R.E., 1987, Foundations in rock. In: Bell F.G. editor. Ground Engineer's reference book. Butterworths, London.
- Lee, H., 1999, A study for the mechanical and hydraulic behavior of rock joints under cyclic shear loading. Seoul National University, Doctoral dissertation.
- Lee, C., Yoon, S., Cho, W.J., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y., 2019, Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite, Journal of Nuclear Fuel Cycle and Waste Technology, 17, 65-80. https://doi.org/10.7733/jnfcwt.2019.17.s.65
- Palmstrom, A., 2005, Measurements of and correlations between block size and rock quality designation(RQD). Tunnelling and Underground Space Technology, 20, 362-377. https://doi.org/10.1016/j.tust.2005.01.005
- Priest, S.D., 1993, Discontinuity analysis for rock engineering. Chapman & Hill, London, UK.
- Priest, S.D., and Hudson, J.A., 1976, Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(8), 135-148. https://doi.org/10.1016/0148-9062(76)90818-4
- Qureshi, M.U., Khan, K.M., Bessaih, N., Al-Mawali, K., and Al-Sadrani, K., 2014, An empirical relationship between in-situ permeability and RQD of discontinuous sedimentary rocks. Electronic Journal of Geotechnical Engineering, 19, 4781-4790.
- Sen, Z., 1990, Cumulative core index for rock quality evaluations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(2), 87-94. https://doi.org/10.1016/0148-9062(90)94857-P
- Singh, B., Goel, R.K., Mehrotra, V.K., Garg, S.K., and Allu, M.R., 1998, Effect of intermediate principal stress on strength of anisotropic rock mass. Tunnelling and Underground Space Technology, 13(1), 71-79. https://doi.org/10.1016/S0886-7798(98)00023-6
- SKB, 1998, Parameters of importance to determine during geoscientific site investigation. TR-98-02, SKB, Stockholm, Sweden.
- Sonmez, H., Ercanoglu, M., and Dagdelenler, G., 2022, A novel approach to structural anisotropy classification for jointed rock masses using theoretical rock quality designation formulation adjusted to joint spacing. Journal of Rock Mechanics and Geotechnical Engineering, 14, 329-345. https://doi.org/10.1016/j.jrmge.2021.08.009
- Zhang, L., and Einstein, H.H., 2004, Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 41(2), 337-341. https://doi.org/10.1016/S1365-1609(03)00100-X
- Zheng, J., Yang, X., Lu, Q., Zhao, Y., Deng, J., and Ding, Z., 2018, A new perspective for the directivity of rock quality designation(RQD) and an anisotropic index for jointing degree for rock masses. Engineering Geology, 240, 81-94. https://doi.org/10.1016/j.enggeo.2018.04.013
- Zimmerman, R., and Bodvarsson G., 1996, Hydraulic conductivity of rock fractures, Transport in Porous Media, 23(1), 1-30. https://doi.org/10.1007/BF00145263