Acknowledgement
The authors appreciate and thank the DECOVALEX-2023 Funding Organizations, Andra, BASE, BGE, BGR, CAS, CNSC, COVRA, US DOE, ENRESA, ENSI, JAEA, KAERI, NWMO, RWM, SURAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the Funding Organizations. This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (GP2020-010) funded by the Ministry of Science and ICT, Korea.
References
- Bergman, T.L., Lavine, A.S., Incropera, F.P., and DeWitt, D.P., 2011, Fundamentals of Heat and Mass Transfer, 7th edition. Wiley, New York.
- Fu, T. F., Xu, T., Heap, M. J., Meredith, P. G., and Mitchell, T. M., 2020, Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics, 121, 103472. https://doi.org/10.1016/j.compgeo.2020.103472
- Ghazvinian, E., Diederichs, M. S., and Quey, R., 2014, 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 506-521. https://doi.org/10.1016/j.jrmge.2014.09.001
- IAEA, 2011, Geological disposal facilities for radioactive waste. Specific safety guide No. SSG-14, IAEA, Vienna, Austria.
- Institute for Korea Spent Nuclear Fuel, 2022, https://iksnf.or.kr/ accessed on 1 December 2022.
- Itasca Consulting Group Inc., 2022. 3DEC (3 Dimensional Distinct Element Code) online manual. https://www.itascacg.com/software/3DEC accessed on 1 December 2022.
- Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W., 2007, Fundamentals in Rock Mechanics. fourth ed. Oxford: Blackwell publishing.
- Kim, T., Lee, C., Kim, J. W., Kang, S., Kwon, S., Kim, K. I., Park, J.W., Park, C.H., and Kim, J. S., 2021, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste. Tunnel and Underground Space, 31(3), 167-183. https://doi.org/10.7474/TUS.2021.31.3.167
- Lan, H.X., Martin, C.D., and Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1.
- Lee, J., Cho, D., Choi, H., and Choi, J., 2007, Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44(12), 1565-1573. https://doi.org/10.1080/18811248.2007.9711407
- Malmgren, L., Saiang, D., Toyra, J., and Bodare, A., 2007, The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden - by seismic measurements. Journal of Applied Geophysics, 61, 1-15. https://doi.org/10.1016/j.jappgeo.2006.04.004
- McDermott, C. I., Fraser-Harris, A., Sauter, M., Couples, G. D., Edlmann, K., Kolditz, O., Lightbody, A., Somerville, J., and Wang, W., 2018, New experimental equipment recreating geo-reservoir conditions in large, fractured, porous samples to investigate coupled thermal, hydraulic and polyaxial stress processes. Scientific Reports, 8(1), 1-12.
- Min, K., B., Lee, J., and Stephansson, O., 2013, Implications of thermally-induced fracture slip and permeability change on the long-term performance of a deep geological repository, International Journal of Rock Mechanics and Mining Sciences, 61, 275-288. https://doi.org/10.1016/j.ijrmms.2013.03.009
- Park, J.W., Park, C., Song, J. W., Park, E. S., and Song, J. J., 2017, Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics, 41(6), 880-898. https://doi.org/10.1002/nag.2634
- Park, J.W., Park, C.H., and Lee, C., 2021a, Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(4), 270-288. https://doi.org/10.7474/TUS.2021.31.4.270
- Park, J.W., Park, C.H., and Lee, C., 2021b, Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(6), 593-609. https://doi.org/10.7474/TUS.2021.31.6.593
- Park, J.W., Park, C.H., Yoon, J.S., and Lee, C., 2020, Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 30(6), 573-590.
- Rutqvist, J., 2020. Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill. Tunnelling and Underground Space Technology, 102, 103454. https://doi.org/10.1016/j.tust.2020.103454
- Sun, C., Zhuang, L., Jung, S., Lee, J., and Yoon, J. S., 2021, Thermally induced slip of a single sawcut granite fracture under biaxial loading. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(4), 1-13. https://doi.org/10.1007/s40948-020-00190-w
- Sun, C., Zhuang, L., Yoon, J.S., and Min, K.B., 2022, Thermally induced shear reactivation of critically-stressed smooth and rough granite fractures, Proceedings of EUROCK 2022, https://www.ril.fi/media/2022-eurock/eurock-2022-programme.pdf accessed on 1 December 2022.
- Swedish Nuclear Fuel and Waste Management Company, 2010, Choice of Method - Evaluation of Strategies and Systems for Disposal of Spent Nuclear Fuel, SKB report, SKB P-10-47.
- Wang, Z., Wang, T., Wu, S., and Hao, Y., 2021, Investigation of microcracking behaviors in brittle rock using polygonal grain-based distinct method. International Journal for Numerical and Analytical Methods in Geomechanics, 45(13), 1871-1899. https://doi.org/10.1002/nag.3246
- Zhuang, L., Sun, C., and Yoon. J., 2022, Laboratory investigation of thermoshearing in critically stressed sawcut and unmated rough granite fractures, DECOVALEX-2023 5th Workshop, Virtual conference.
- Zoback, M.D. and Gorelick, S.M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10164-10168. https://doi.org/10.1073/pnas.1202473109