DOI QR코드

DOI QR Code

다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar

  • 투고 : 2022.12.12
  • 심사 : 2022.12.26
  • 발행 : 2022.12.31

초록

수직갱도에서 붕괴사고가 일어났을 때, 붕괴현장의 위험도를 신속하게 평가하는 것은 매우 중요하다. 사고현장에서 추가적인 붕괴 위험 때문에 인력을 투입한 직접적인 조사는 불가능하다. 수백 미터 심도를 갖는 수직갱도에서는 무선 신호의 한계와 와류 때문에 고속 라이다 센서를 장착한 드론을 이용한 조사가 불가능하다. 기존 연구에서는 견인방식을 이용한 단일채널 Lidar 센서를 3차원 형상화 장비가 구현되어 적용되었다. 관성(IMU)센서 데이터를 바탕으로 탐사시 발생하는 회전 운동과 진자운동에 대한 보정이 이루어졌고, 인접 측정데이터 간의 유사성 검토를 통해 정밀 보정을 수행하였으나 탐사 깊이가 깊어질수록 오차가 누적되는 현상이 발견되었다(Kim et al.(2020)). 본 논문에서는 다중채널 Lidar 센서를 적용하여 견인장치에 의해 상승이동하면서 연속적인 단면데이터가 수집되었다. 다중채널 Lidar의 방사 특성 때문에 발생하는 데이터 중첩성을 이용하여 동일 심도의 측정데이터 간의 유사성을 통해 회전운동을 정밀 보정하기 위한 기법이 적용되었다. 180 m 심도의 수직갱도에서 구현된 탐사장비를 이용하여 0~165 m 구간이 조사하여 수직갱도의 형상이 3차원 그래픽으로 재구성되었다.

Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

키워드

과제정보

This project was funded by Korea Mine Rehabilitation and Mineral Resources Corporation (Komir) and is currently supported by the publication grant.

참고문헌

  1. Jeong, C. and Park, H., 2003, DEM generation of Rock Slope using Laser Scanning and Digital Stereo Photogrammetry, Tunnel & Underground Space, 13(3), 207-214.
  2. Kim, S., Yoon, H., and Kim, S., 2020, Fabrication of three-dimensional scanning system for inspection of massive sinkhole disaster sites, J. of Korea robotics society, 15(4), 341-349. https://doi.org/10.7746/jkros.2020.15.4.341
  3. Kobal, M., Bertoncelj, I., Pirotti, F, Dakskobler, I., and Kutnar, L., 2015, Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-Case study of a high karst area in the Dinaric mountains, PLOS ONE.
  4. Kobal, M., Bertoncelj, I., Pirotti, F., and Kutnar, L., 2014, Lidar processing for defining sinkhole characteristics under dense forest cover: A case study in the Dinaric mountains, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 113-118.
  5. Lee, E. J., Shin, S. Y., Ko, B. C., and Chang, C., 2016, Early sinkhole detection using a dron-based thermal camera and image processing, Infrared Physics & Technology, 78, 223-232. https://doi.org/10.1016/j.infrared.2016.08.009
  6. Motyka, Z., and Jelle, B. P., 2019, System model for spatial mapping anthropogenic sinkholes and subsidence basins in mining areas applying 2D laser scanner technique, 5th Int. Sci. Conf. on Civil Engineering-Infrastructure-Mining, Krakow, Poland, 106.
  7. Yu, S., Yang, I., Shim, Y., Kim, S., and Yoon, H., 2015, Apparatus for 3D scanning underground cavity, Korea Patent 10-2015-00049207.