Acknowledgement
This research was supported by a grant (NRF-2020R1A4A2002855) from NRF (National Research Foundation of Korea) funded by MEST (Ministry of Education and Science Technology) of Korean government.
References
- Achenbach, J.D. (1973), Wave propagation in elastic solids North, Holland Amsterdam.
- Ali, G.A., Mahmoud, P., Mohammad, A. and Arani, M.R.G. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
- Antipov, Y. (2002), "Diffraction of a plane wave by a circular cone with an impedance boundary condition", SIAM J. Appl. Math., 62(4), 1122-1152. https://doi.org/10.1137/S0036139900363324
- Asghar, S. and Zahid, G.H. (1986), "Field in an open-ended waveguide satisfying impedance boundary conditions", ZAMP, 37, 194-205. https://doi.org/10.1007/BF00945082
- Castro, L.P. and Kapanadze, D. (2008), "The impedance boundary-value problem of diffraction by a strip", J. Math. Anal. Appl., 337(2), 1031-1040. https://doi.org/10.1016/j.jmaa.2007.04.037
- Fritz, S. and Marco, T. (2016), "Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics", Smart Struct. Syst., Int. J., 18(6), 1145-1167. https://doi.org/10.12989/sss.2016.18.6.1145
- Fu, Y.B. and Mielke, A. (2002), "A new identity for the surface impedance matrix and its application to the determination of surface-wave speeds", Proceedings of Royal Soc. A-Math. Phys. Eng. Sci., 458, 2523-2543. https://doi.org/10.1098/rspa.2002.1000
- Godoy, E., Duran, M. and Nedelec, J.C. (2012), "On the existence of surface waves in an elastic half-space with impedance boundary conditions", Wave Motion, 49(6), 585-594. https://doi.org/10.1016/j.wavemoti.2012.03.005
- Harris, J.G. (2001), Linear elastic waves, Cambridge, New York.
- Henrik, B., Nils, R. and Bjorn, B. (2016), "Non-contact surface wave testing of pavements: comparing a rolling microphone array with accelerometer measurements", Smart Struct. Syst., Int. J., 17(1), 1-15. https://doi.org/10.12989/sss.2016.17.1.001
- Hiptmair, R., Lpez-Fernndez, M. and Paganini, A. (2014), "Fast convolution quadrature-based impedance boundary conditions", J. Comput. Appl., 263, 500-517. https://doi.org/10.1016/j.cam.2013.12.025
- Kakar, R. and Kakar, S. (2015), "Analysis of stress, magnetic field and temperature on coupled gravity-Rayleigh waves in layered water-soil model", Earthq. Struct., Int. J., 9(1), 111-126. https://doi.org/10.12989/eas.2015.9.1.111
- Lei, W. and Yuan, F.G. (2007), "Active damage localization technique based on energy propagation of Lamb waves", Smart Struct. Syst., Int. J., 3(2), 201-217. https://doi.org/10.12989/sss.2007.3.2.201
- Li, X.F. (2006), "On approximate analytic expressions for the velocity of rayleigh waves", Wave Motion, 44, 120-127. https://doi.org/10.1016/j.wavemoti.2006.07.003
- Malischewsky, P. (1987), Surface Waves and Discontinuities, Elsevier, Amsterdam, Netherlands.
- Malischewsky, P. (1997), "Comment to a new formula for the velocity of rayleigh waves by, Nkemzi [wave motion 26 (1997) 199205]", Wave Motion, 31, 93-96. https://doi.org/10.1016/S0165-2125(99)00025-6
- Malischewsky, P. (2011), "Seismological implications of impedance-like boundary conditions", Proceedings of the International Conference Days on Diffraction, pp. 137-140.
- Mathews, I.C. and Jeans, R.A. (2007), "An acoustic boundary integral formulation for open shells allowing different impedance conditions top and bottom surfaces", J. Sound. Vib., 300(3), 580-588. https://doi.org/10.1016/j.jsv.2006.06.067
- Mielke, A. and Fu, Y.B. (2004), "Uniqueness of the surface-wave speed: A proof that is independent of the stroh formalism", Math. Mech. Solids, 9(1), 5-15. https://doi.org/10.1177/1081286503035196
- Mujibur, R. and Thomas, M. (2006), "A note on the formula for the rayleigh wave speed", Wave Motion, 43, 272-276. https://doi.org/10.1016/j.wavemoti.2005.10.002
- Muskhelishvili, N.I. (1953), Singular Intergral Equation.
- Muskhelishvili, N.I. (1963), Some Basic Problems of Mathematical Theory of Elasticity, Cambridge, Groningen, Netherlands.
- Nam, N.T., Merodio, J., Ogden, R.W. and Vinh, P.C. (2016), "The effect of initial stress on the propagation of surface waves in a layered half-space", Int. J. Solids Struct., 88, 88-100. https://doi.org/10.1016/j.ijsolstr.2016.03.019
- Negin, M. (2015), "Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer", Struct. Eng. Mech., Int. J., 56(3), 491-506. https://doi.org/10.12989/sem.2015.56.3.491
- Negin, M. (2018), "Seismic surface waves in a pre-stressed imperfectly bonded covered half-space", Geomech. Eng., Int. J., 16(1), 11-19. https://doi.org/10.12989/gae.2018.16.1.011
- Nkemzi, D. (1997), "A new formula for the velocity of Rayleigh waves", Wave Motion, 26, 199-205. https://doi.org/10.1016/S0165-2125(97)00004-8
- Page, C.H. and Stacey, T.R. (1986), Practical Handbook for Underground Rock Mechanics, Trans Tech Publications.
- Peng, Ge., Yuan, S.F. and Xu, X. (2016), "Damage detection on two-dimensional structure based on active Lamb waves", Smart Struct. Syst., Int. J., 2(2), 171-188. https://doi.org/10.12989/sss.2006.2.2.171
- Rahman, M. and Barber, J.R. (1995), "Exact expressions for the roots of the secular equation for Rayleigh waves", J. Appl. Mech., 62(1), 250-252. https://doi.org/10.1115/1.2895917
- Rayleigh, L. (1885), "On waves propagated along the plane surface of an elastic solid", Proceedings of the London Mathematical Society, 17, 4-11. https://doi.org/10.1112/plms/s1-17.1.4
- Senior, T.B.A. (1960), "Impedance boundary conditions for imperfectly conducting surfaces", Appl. Sci. Res., Sec. B, 8(1), 418-436. https://doi.org/10.1007/BF02920074
- Stupfel, B. and Poget, D. (2011), "Sufficient uniqueness conditions for the solution of the time harmonic Maxwell's equations associated with surface impedance boundary conditions", J. Comput. Phys., 230(12), 4571-4587. https://doi.org/10.1016/j.jcp.2011.02.032
- Tiersten, H.F. (1969), "Elastic surface waves guided by thin films", J. Appl. Phys., 40, 770-789. https://doi.org/10.1063/1.1657463
- Vinh, P.C. and Hue, T.T.T (2014a), "Rayleigh waves with impedance boundary conditions in anisotropic solids", Wave Motion, 51(7), 1082-1092. https://doi.org/10.1016/j.wavemoti.2014.05.002
- Vinh, P.C. and Hue, T.T.T (2014b), "Rayleigh waves with impedance boundary conditions in incompressible anisotropic half-spaces", Int. J. Eng. Sci., 85, 175-185. https://doi.org/10.1016/j.ijengsci.2014.08.002
- Vinh, P.C. and Ogden, R.W. (2004), "On formulas for the Rayleigh wave speed", Wave Motion, 39, 191-197. https://doi.org/10.1016/j.wavemoti.2003.08.004
- Vinh, P.C. and Xuan, N.Q. (2017), "Rayleigh waves with impedance boundary condition: Formula for the velocity, existence and uniqueness", Eur. J. Mech. A-Solid, 61, 180-185. https://doi.org/10.1016/j.euromechsol.2016.09.011
- Yl-Oijala, P. and Jrvenp, S. (2006), "Iterative solution of high-order boundary element method for acoustic impedance boundary value problems", J. Sound. Vib., 291(3), 824-843. https://doi.org/10.1016/j.jsv.2005.06.044
- Yoon, H.K., Lee, Changho, Kim, H.K. and Lee, J.S. (2011), "Evaluation of preconsolidation stress by shear wave velocity", Smart Struct. Syst., Int. J., 7(4), 275-287. https://doi.org/10.12989/sss.2011.7.4.275
- Zakharov, D.D. (2006), "Surface and internal waves in a stratified layer of liquid and an analysis of the impedance boundary conditions", Appl. Math. Mech., 70(4), 573-581. https://doi.org/10.1016/j.jappmathmech.2006.09.008